
THE NU ALGOL

PROGRAMMING SYSTEM

FOR

UNIVAC 1107/1108

PROGRAMMERS GUIDE

AND REFERENCE MANUAL

COMPUTING CENTRE NTH

TRONDHEIM NORWAY

l~
TAPIR

DECEMBER 1969

)

l

PREFACE

The system described herein was initiated with two objectives:

- to provide ALGOL-users with a reasonable efficient and

reliable programming tool.

- to serve as an adequate base for the implementation of

the SIMULA-67 language.

For practical reasons it became necessary ta be compatible with

UNIVAC's old ALGOL system which thus served as the detailed

definition of the source language. However, in a few places the

compatibility has been sacrificed to achieve a more efficient

and reliable implementation. From a pragmatical point of view

these are regarded to be of no significance for most users.

This manual is a first edit ion and is made in alose leaf form

to make later corrections and supplements easy.

II

ACKNOWLEDGEMENT

This system was designed and implemented as a joint effort of

the Norwegian Computing Centre, Oslo and the Computing Centre

at, the Technical University of Norway, Trondheim. The design

of the storage allocation scheme for data and program is done

mainly by prof. O.J. Dahl, Mr. S. Kubosch, Mr. B. Myrhaug and

Mr. K.S. Skog. The implementation of the runtime system is

by Mr. Kubosch. Mr. B. Myrhaug made the design of the 1/0 sec

tion which was implemented by Mr. R. Kerr and Mr. B. Meldrum.

The design and implementation of the compiler is mainly by

Mr. O. Meland, Mr. K. Rekdal and Mr. K.S. Skog.

Mr. Kubosch made the compiler interface to the EX-2 system.

Mr. B. Meldrum wrote the first draft of this manual. In addi

tion on part time and/or in shorter periodes Mr. A.O. 0stlie,

Mr. N. Bull, Mr. D. Belsness, Mr. H. Nordvik, Mr. A. 0verby

and Mr. K. Sundnes has been involved with the project.

The final corrections and proffreading of the manual was done

by Mr. T. Noodt and Mr. K. Rekdal.

l wish to express my gratitude to aIl mentioned here and ln

addition to their wives and children who undoubtedly has suf

fered in periodes when teory and code did not really match.

Last but not least a particular thanks to Mrs. L. Aasheim and

,Miss M. Sundet for their patient interpretation of many

cryptic manuscripts.

The project has been superviced by Knut Skog.

\
)

)

Preface

Acknowledgement

Cont~nts

1. INTRODUCTION

1.1. General

III

CONTENTS

1.2. Scope and Format of this Manual

1.3. The NU ALGOL Compiler

1.4. Differences between ALGOL 60 and NU ALGOL

1.4.1. Extensions to ALGOL 60

1.4.2. Deletions from ALGOL 60

2. BASIC INFORMATION

2.1. Basic Symbols

2.2~ Identifiers

2.3. Form of an ALGOL Program

2.4. Layout of an ALGOL Program on Cards

2.5. Special Identifiers

2.5.1.

2 . 5 . 2 .

Reserved Identifiers

Standard Procedure Identifiers

3. DECLARATIONS

3.1. Introduction

l

II

III

1.

1.

1.

2 .

2 •

2 •

3 .

4.

4 •

4.

5 .

6 .

6 .

6 .

7 .

8 .

8 •

3.2. Declaration of Simple Variables 9.

3.2.1. Declaration of a Simple String 10.

3.2.2. Declaration of a Substring 10.

3.2.3. Storage required by Simple Variables 11.

3.3. Declaration of Subscripted Variables (array) 12.

3.3.1. Rules for Array Declarations 13.

3.3.2. Meaning of Array Declarations 13.

3.3.3. Declaration of a String Array 14.

3.3.4. Meaning of String Array Declarations 15.

3.4. Other Declarations 15.

4. EXPRESSIONS

4.1.

4.2.

Introduction

Arithmetic Expressions

4.2.1. Meaning

4.2.2. Types of Values

4.2.3. Arithmetic Operands

16.

16.

16.

16.

16.

17.

4.2.4.

4.2.5.

4.3.

4.3.1.

4.3.2.

4.4.

4. 5 .

4.5.1.

4.5.2.

4.5.3.

4.6

4.6.1.

4.6.2.

4. 7 .

IV

Arithmetic Operators

Type of Arithmetic Expressions

Boolean Expression

Boolean Operators

Relational Operators

Precedence of Arithmetic, Boolean and

Relational Operators

String Expressions

String Operands

String Operators

Substrings

Designational Expressions

Labels

Switches

Conditional Expressions

5. STATEMENTS

5.1. Assignment Statements

5.2. GO TO Statements

5.3. Compound Statements

5 . 4.

5 • 5 •

5 . 6 .

6. BLOCKS

6 . 1.

6 • 2 •

6 • 3 •

Conditional Statements

Repetition Statements - FOR Statements

Other Types of Statements

Nested Blocks

Local and Global Identifiers

Local and Global Labels

6.4. Use of Blocks

7. PROCEDURES AND TYPE PROCEDURES

7 . 1.

7.1.1.

7.1.2.

7.1.3.

7.1.4.

7.1.5.

7.1.6.

7.1.7.

7.1.8.

Procedures

Purpose

The Procedure Declaration

Identifiers in the Procedure Body

Specifications.

The Procedure Body

Classification of FormaI Parameters

VALUE Specification

Comments in a Procedure Head

19.

21.

22.

23.

24.

25.

26.

26.

26.

27.

29.

30.

30.

31.

33.

33.

35.

35.

36.

38.

45.

46.

46.

47.

48.

49.

50.

50.

50.

50.

50.

51.

53.

53.

54.

55.

'\
)

,)

v

7.1.9. The Procedure Statement

7.1.10. The Actual Parameter List

7.1.11. Execution of a Procedure Statement

7.1.12. Recursivity

7.2. Type Procedures

7.2.1.

7 • 2 • 2 •

7 • 2 • 3 •

7 • 3 •

7.3.1.

7 . 3 . 2 .

7 • 3 • 3 •

7.3.4.

Introduction

The Type Procedure Declaration

Use of a Type Procedure

External Procedures

Introduction

External Declaration

ALGOL External Procedures

FORTRAN Subprograms

7.3.5. Machjne Language Procedures

7.3.5.1 The Externa1 SLEUTH Procedure

7.3.5.2 The External LIBRARY Procedure

7.3.5.3 String Parameters

7.3.5.4 Array Parameters

7.3.5.5 String Array Parameters

7.4. Standard Procedures

7.4.1. Available Procedures

7.4.2. Special Routine Descriptions

7.4.3. Transfer Functions

8. INPUT/OUTPUT

8. 1.

8.2.

8 . 3 .

8.3.1.

8.3.2.

8 . 3 • 3 •

8.3.4.

8.3.5.

8.3.6.

8 • 3 • 7 •

Introduction

Parameters to Input/Output Statements

Deviees

Possible Deviees

Actua1 Deviees

Implied Deviees

Deviee CARDS

Deviee PRINTER

Deviee TAPE

Deviee DRUM

8.3.8. Deviee CORE

8.4. Modifier List

8.4.1. Possible Modifiers

8.4.2. General description

8.4.3. Restrictions

55.

55.

57.

58.

58.

58.

59.

59.

6 a .
60.

60.

61.

62.

63.
65.

69.

72.

73.

74.

77.

77.

85.

89 .

90.

90.

91.

93.

93.

93.

94.

94.

96.

97.

101.

104.

105.

106.

106.

106.

8.4.4.

8.4.5.

8.4.6.

8.5.

8.5.1.

8 . 5 . 2 .

8 . 5 • 3 •

8.5.4.

Modifier KEY

Modifier EOF

Modifier EOI

Label List

VI

Action with'READ when Deviee is implied

or CARDS

Action with READ when Deviee ·is TAPE

Action with READ or WRITE when Deviee is

DRUM

Action with READ or WRITE when Deviee is

CORE

8.5.5. Action with WRITE when Deviee is implied,

107.

109.

Ill.

Ill.

112.

112.

112.

113.

PRINTER or CARDS 113.

8.5.6. Action with WRITE when Deviee lS TAPE 113.

8.5.7.

8 . 6 •

8.6.1.

8.6.2.

8.6.3.

8.6.4.

8 . 6 . 5 .

8.6.6.

8.7.

8.7.1.

8.7.2.

Action with POSITION -.only allowed Deviee

is TAPE

Format List

Implied or Free Format

Inline Formats

Declared Format

Format Phrases with WRITE

Format Phrases with READ

Repeat Phrases

Input/Output List

Inline List

Declared List

8.7.3. Rules for Lists

8.7.4. Sublists

8.B. Input/Output Statements

8.8.1. The READ Statement

8.8.2. The WRITE Statement

8.8.3. The POSITION Statement

8.8.4. The REWIND and REWINT Statements

8.8.5. The MARGIN Statement

9. OTHER INFORMATION

9.1. Comments

9.2. Options

9.3. Chained Programs and NU ALGOL

113.

115.

115.

119.

120.

120.

127.

134.

137.

137.

138.

138.

139.

139.

139.

'140.

140.

141.

141.

143.

144.

146.

\
----,/

VII

10. ERROR MESSAGES

10.1.

10.2.

Compile-Time Error Messages

Run-Time Error Messages

Appendix A: BASIC SYMBOLS, their cardcodes and field data

representation in the inputphase of the com

piler.

Appendix B: EXAMPLES OF PROGRAMS

Appendix C: JENSENS DEVICE

Appendix D: Differences between UNIVAC 1107 ALGOL and the

NU ALGOL system.

Appendix E: SYNTAX CHART

148.

149.

157.

)

\

.~

UNIVAC 1107/1108 NU ALGOL

1 INTRODUCTION *)

1.1 General

NU ALGOL is a language for communicating scientific and data

processing problems to the UNIVAC 1107/1108 computers. The

basis for this language is the "Revised Report on the Algorithmic

Language ALGOL 60" (P. Naur (ed.), Regnecentralen, Copenhagen

1962). This implementation of ALGOL 60 is very close to that

of the report. It's one significant omission is the omission

of aIl own variables. It's significant additions include three

new types STRING, COMPLEX and REAL2 as weIl as the allowing of

external procedures written in machine language or FORTRAN and

the definition of a versatile input/output system.

NU ALGOL is compatible with UNIVAC 1107/1108 ALGOL with the

few exceptions noted in appendix E - "Differences between NU

ALGOL and UNIVAC 1107/1108 ALGOL". The major differences bet

ween the two are the actual method of compilation, the extended

input/output facilities, and a major improvement in both runtime

and compiletime security and speed.

1.2 Scope and Format of this Manual

The layout of this manual has been designed to provide fast

reference to aIl features of the language so that those

familiar with ALGOL may look up points easily. At the same

time, many examples have been inserted to allow beginning

programmers to become familiar with the features of the

language.

No attempt has been made to illustrate aIl the constructions

possible, however, appendix F contains a complete syntax

chart for NU ALGOL.

*) References

This introduction is based on material contained ln the UNIVAC
1107 Programmer's Guide.

- 2 -

Format

Although the ALGOL report cited ab ove uses underlining to

delineate basic symbols, this manual does note AlI explana

tions and examples give the basic symbols as they would be

f9und on printer output from the computer

upper case letters with nounderlining.

that is in

In describing forms of constructions (syntax) the bracket

pair < and!> are used to isola te the cons tructions under

definition. For a complete and unambigious definition of

syntax see appendix G.

1.3 The NU ALGOL Compiler

The NU ALGOL compiler is a program which accepts statements

expressed in ALGOL and produces programs for the UNIVAC 1107/

1108 computers.

An ALGOL program is a sequence of statements written in the ALGOL

language. These are translated by the compiler into the langu

age of the ,computer: machine language. The ALGOL statements are

called the source code, and the translated statements are called

the object code. The compiler itself is a program written in

machine language and is called the UNIVAC NU ALGOL Compiler.

While translating the ALGOL statements, the compiler looks for

errors, and reports these back to the programmer.

The compiler operates in four passes. Upon successful compil

ation, the object code can be read into the main storage and

executed. Activities that occur during compilation are some

times referred ta as compile-time activities; for instance,

compile-time diagnostics. The execution phase is referred to as

run-time.

1.4 Differences between ALGOL 60 and NU ALGOL

1.4.1 Extensions to ALGOL 60

'a) The addition of STRING and STRING ARRAY variables has

been made to enhance the value of ALGOL as a data

processing language.

)

J

- 3 -

b) The addition of the arithmetic types COMPLEX and REAL2

has been made to enhance the value of ALGOL toscienti

fic users.

c) XOR has been-added to list of logical operators.

d) EXTERNAL PROCEDURE declarations have been implemented

to allow easier programming of large problems and the

building of program libraries.

e) Input and output routines have been defined along with

FORMAT and LIST declarations to be used by them.

f) A compact form for GO TO and FOR statements has been

provided.

g) Variables are zeroed upon entry to a block so that

initialization statements are not required.

h) The controlled variable of a FOR statement has a

defined value when the statement is terminated by

exhaustion of the FOR-list.

1.4.2 Deletions from ALGOL 50

a) The following limitations have been imposed.

Identifiers are unique only with respect to their

first 12 characters.

Identifiers may not contain blanks.

Numbers may not contain blanks.

Certain ALGOL words may only be used in a specific

contexte

b) own variables are excluded.

c) Numeric labels are not allowed.

d) The comma is the only delimiter allowed ln a procedure

calI.

e) The result of an integer raised to an integer power is

always of type REAL.

f) AlI the formaI parameters of a procedure must be

specified.

g) In a Boolean expression aIl operands are not evaluated

when this is not necessary for determining the result.

-4-

2 BASIC INFORMATION

2.1 Basic Symbols

The following symbols have meaning in NU ALGOL:

ê~IEE!~,-~YIE!22!~

The letters

The digits

The logical constants

The ALGOL symbols

A - Z

0-9

TRUE FALSE

Arithmetic operators + - / *
Special characters = ()

& < >

A space (blank) symbol

$

Sorne multiples of characters are given meaning as if they

constituted a single character:

Il

&&

(integer divide)

(exponentiation)

base la scale factor for double precision constants

replacement (instead of =)

colon (same as .:)

A set of reserved words such as:

BEGIN END IF THEN etc.

A complete list is given ln 2.5.

For details on card code and character set, see appendix A.

2.2 Identifiers

~~E:e~~~

Identifiers (apart from those mentioned in 2.5) have no

inherent meaning, but are names that the programmer chooses

to use to refer to various objects (operands, procedures,

labels etc.).

\

)

-5-

Rules for identifiers

a) An identifier is combination of characters taken from the

set of letters (A - Z) and the set of digits (0 - 9).

b) The first character of an identifier must be a letter.

c) Although any number of characters may be used to make an

identifier, only the first 12 uniquely specify the identi

fier.

d) It is often easier to read the program if the identifier is a

mnemonic.

Examples:

i)

ii)

A P060 ZlZ4

NONLINEARRESIDUE

NONLINEARRESULT

KAFl

are considered identical because their first 12 characters

are the same.

_J 2.3 Form of an ALGOL Program

)
-

ALGOL programs are made up of one or more blocks. The

concept of blocks is treated ~n section 6. In-brief, an ALGOL

program containing only one block has the following form:

BEGIN

<Declarations>$

<Statements>

END$

Declarations are described in Section 3.

Statements are fully treated in Section 5. Briefly the

following are true.

a) Statements are orders to perform one or more computations or

input/output operations.

b) Statements are separated from each other by the symbol $ or

the symbol ; (Either may be used).

c) Exit from a block must be through the final END or through

a jump to a label in an enclosing block.

-6-

2.4 Layout of an ALGOL program on Cards

The source code to the compiler must come initially from punched

cards. The following rules should be followed.

a) Only columns l through 72 are read for information.

b) Columns 73 through 80 may be used for any purpose.

c) The compiler considers that there is space between column

72 of one card and column l of the next card except in

strings.

d) One, or more statements may be placed on one card.

el The program text should be arranged to make the program

readable and easy to change~

2.5 Special Identifiers

2.5.1 Reserved Identifiers

The following sets of characters have special meanings

and may not be used as identifiers.

ALGOL GOTO SLEUTH

AND GTR STEP

ARRAY IF STRING

BEGIN IMPL SWITCH

BOOLEAN INTEGER THEN

COMMENT LABEL TO

COMPLEX LEQ TRUE

DO LIBRARY UNTIL

ELSE LIST VALUE

END LOCAL WHILE

EQIV LSS XOR

EQL NEQ

EXTERNAL NOT

FALSE OFF

FOR OPTION

FORMAT OR

FORTRAN PROCEDURE

GEQ REAL

GO REAL2

)

-7-

2.5.2 Standard Procedure Identifiers

The fOllowing identifiers may be used without explicit

declarations for calling standard procedures.

ABS LINEAR

ALPHABETIC LN

ARCCOS MARGIN

ARCSIN MAX

ARCTAN MIN

CAFDS MOD

CBROOT NEGEXP

CHAIN NORMAL

CLOCK NUMERIC

COMPL POISSON

CORE POSITION

COS PRINTER

COSH PSNORM

DISCRETE RANK

DRAW RANDINT

DRUM RE

DRUMPOS READ

DOUBLE REWIND

ENTIER REWINT

EOF SIGN

EOI SIN

ERLANG SINH

EXP SQRT

HISTD TAN

HISTO TANH

lM TAPE

INT UNIFORM

KEY WRITE

LENGTH

These identifiers may however be redeclared for other use.

For details on standard procedures see section 7.4.

-8-

3. DECLARATIONS

3.1 Introduction

~~E'l?~~~

Dèclarations are used to inform the compiler that identi

fiers have certain attributes. A declaration for an identi

fier is valid for one block, inner blocks inclusive.

Rules for identifiers

1. AlI identifiers used in a pro gram , except standard

procedure identifiers, must be declared.

2. In a block (see section 6) an identifier may be declared

only once.

Variables are names which are said ta possess values.

These values may in the mathematical sense be integers,

real num~ers, or complex numbers. In addition there are

the possibility of the truth values TRUE or FALSE. AlI

these are different types of values. A variable of a certain

type can only possess certain values partially according to

the rules of mathematics and partially because of hardware

limitations.

In this manual the symbol <type> will be used to mean that

'this symbol can be replaced with one of the following ALGOL

types which then impose the limits shown.

<type>

INTEGER

REAL

BOOLEAN

COMPLEX

Value

Integral values:

Real values:

Truth values:

Complex Values:

Limits

[-34359738367,
+34359738367]

(-3.37xI038, -1.48 xIO- 39),

0, (1.48xI0-~9, 3.37 xl0 38)

Up to 8 significant digits

FALSE, TRUE

Same limits as for REAL
since the real and 'imaginary
parts are treated as two
separate real numbers.

\

)

)

<type>

REAL2

STRING

-9-

Value

Real values:

Alphanumeric c~arac
ters

!~~!~~~_Y~~~~~_~É_~~~E~~_~~~~~è~~~

Limits

Same limits as for type
REAL but up to 16 signi
ficant digits.

Any character in the UNIVAC
1107/1108 character set.

AlI variables declared in a block are initially set when the

block is entered. For variables of type INTEGER, REAL, REAL2,

and COMPLEX the initial value is zero (0). For BOOLEAN

variables the initial value is FALSE. For STRING variables

the initial value is a sequence of blanks.

3.2' Declaration of Simple Variables

~~~I?~~~ 

A simple variable lS a non-subscripted name for a value 

of a given type. 

The declaration of a simple variable defines the type of 

value the identifier for that variable may assume. 

Examples: 

INTEGER 

REAL 

BOOLEAN 

COHPLEX 

REAL2 

STRING 

Form 

A $ 

Bl,C2,D $ 

RIGHT,ANSWER $ 

ROOTS $ 

BIGNUMBER,EVENBIGGER $ 

LETTERS (25) $ 

<type><list of identifiers>$ 

<type> is defined in 3.1. 

List of identifiers means one identifier (see section 2.2) 

or several identifiers separated by commas. 

The declaration ends with the character $ or 



-10-

3.2.1 Declaration of a SImple String. 

~~EE~~~ 

The declaration 'of a simple string variable provides a 

means of storing and referring to a collection of alpha

numeric characters in Fielddata code by the use of a 

single identifier . 

. Form 

STRING <identifier> «string part~) 

Identifier is defined in 2.2. 

String part is an integer expression (in the outer

most block of a program, an integer constant), whose 

value is the maximum number of characters to be kept 

in the string. 

In a substring declaration string part may also be a 

list of integer expressions and string declarations 

separated by commas. (See sec. 3.2.2 below) 

Examples: 

STRING 

STRING 

SI (25) $ 

S2 (14), CHARAC (22), LTRS (4) $ 

In an inner block also: 

STRING CHARS (N) $ 

3.2.2 Declaration of a Substring. 

A substring is a part of main string and has the same 

properties as a string. 

A substring is declared by placing an identifier and a 

string part in the string part of the main string. 

The length of the main string is then the sum of the 

lengths of its substrings plus any other lengths specified~ 

~: The length of a string may not be specified by the 

call of a type procedure as this will be taken as a substring 

declaration. If the type procedure and the main string are 

declared in the same block, this ambignity will give the 

error message "DOUBLE DECLARATION". 



-11-

Examp1es: 

~) STRING SaUT (SIN1(20),SIN2(42))$ 

. , ) 

SaUT has a 1ength of 62 characters. 

SIN1 is a substring of 1ength 20 and is the same as 

characters 1 through 20 of the main string SaUT. 

SIN2 is a substring of 1ength 42 and is the same as 

characters 21 through 62 of the main string SaUT. 

STRING LTRS (10,NUMBS(12),4,CHRS(6))$ 

LTRS has a length of 32. 

NUMBS has a length of 12 and is the same as characters 

Il through 22 of the string LTRS. 

CHRS has a length of 6 and is the same as characters 

27 through 32 of the string LTRS. 

3.2.3 Storage reguired by Simple Variables. 

The memory of the UNIVAC 1107/1108 computers is divided into 

"words" each consisting of 36 bits. 

Each identifier reserv~s a number 'of words depending on its 

type. 

TYPE -
INTEGER 

REAL 

BOOLEAN 

CaMP LEX 

REAL2 

STRING 

NUMBER OF WORDS 

1 

1 

1 

2 - one for rea1 part 
- one for imaginary part 

2 - ta al10w the carrying of more 

si~nificant d~gits 

The integer value given by 

ENTIER «Length + start pas. + Il)/6) 

where start position goes from 0 ta 5 

and 1ength is the number of characters 

in the string . 



-12-

3.3 Declaration of Subscripted Variables (array)." 

~~EE9ê~ 

An array is a set of variables each of which can be accessed 

by referring to an identifier with one or more subscripts. 

Each member of the set has aIl the properties of a simple 

variable. 

The declaration of an array ~etine~ the type of value each 

member of the array may assume, the number of subscripts 

required, and their limits. 

Form 

<type> ARRAY<array list>$ 

a) Type is defined in 3.1. ,If type is omitted, the type 

REAL is assumed. 

b) Array list is a list of array segments, which have the form 

<listof· identifiers> «bound ~air list» 

A bound pair list consists of one bound pair or several 

bound pairs separated.by cqmmas. 

A bound pair has the form 

<aritmetic expression>:<arithmetic expression> 

Section 4 defines arithmetic expression. 

Note: In the outermost block the aritmetic expression can 

only be a. constant 

Examples: 

INTEGE;R ARRAY AI (0:25) $ 

REAL ARRAY AR (1:3,1:3) $ 

COMPLEX ARRAY AC (-2:20),AD,AEC14:24) $ 

BOOLEAN ARRAY BA,BC,BD(0:5),BE(1:4) $ 

REAL2 ARRAY Kl,K2,KL,KFC-l:10) $ 
In an inner block aIso: 

INTEGER ARRAY Al (N:NH4) $ 



j 

-13-

3.3.1 Rules for Array Declarations. 

a) Each bound pair defines the values the corresponding subscript 

may take. In NU ALGOL, the number oi subscripts is limited 

to 10. 

b) In abound pair, the first arit~metic expression is called 

the lower bound. The second arithmetic expression is the 

upper bound. The lower bound must always be less than or 

equal to the upper bound. 

c) The arithmetic expressions must beof type INTEGER or of 

a type which can be converted to INTEGER CREAL~REAL2). 

3.3.2 Meaning· of ArrayDeclarations. 

a) The meaning of an array declaration can ,best be explained 

by examples. An array declaration with one subscript 

position such as 

REAL AR RAY ACO:IO)$ 

declares Il REAL subscripted variables: 

ACO) ,ACl) ,A(2) ,A(3) ,A(4),ACS) ,A(6)_,AC7) ,A(8) ,A(9)',ACIO) 

An array declaration with two subscript positions such as 

ARRAY XYC-2!1,1~3), 

declares 12 REAL subscriptedvariables: 

XYC-2,1) XYC-2;2) XYC-2,3) 

XYC-l,l) XY(-1,2) XY(-1,3) 

XYC 0,1) XYC 0,2) Xy( . 0,3) 

XYC 1,1) XYC 1,2) XY(l, 3) 

Note that the use of a subscripted variable consumes sub

stantially more computer time and program space tha:n the 

use of a simple variable. 

b) If several identifiersare followed by only one bound pair 

list then these identifi~~~ eachr~fer tb aharray with' the 

number of subscripts and the boünds given in that bound 

pair liste 



-14-

Example: 

COMPLEX ARRAY CAD,CM,KF(4:20) $ 

This declaration delines three arrays each of type COMPLEX, 

with 17 members and with a lower bound of 4 and upper bound 

of 20. 

Note that aIl these arrays occupy different areas of 

storage. 

3.3.3 Declaration of a String Array. 

~~EE~~~ 

Subscripted STRING variables may be declared using the STRING 

ARRAY declaration. This gives the user a possibility of choosing 

among different strings by means of appropriate subscripting. 

Form 

STRING ARRAY <identifier>«string part>:<bound pair list»$ 

An identifier is defined in 2.2. 
The term string part' is defined in 3.2. 

The term bound pair list is defined in 3.3. 

~~!~ê_f2E_ê!E!~g_~EE~~_~~~!~~~!!~~ê 

A st~ing array declaration must obey the rules for both string 
declarations and array declarations with the exception that 
each identifier must be followed by 

«string part>:<bound pair list» 

even if aIl characteristics are the same for the string arrays 

being declared. 

Examples: 

STRING ARRAY 

STRING ARRAY 

STRING ARRAY 

STRING ARRAY 

SAX(14:0:5,1:4)$ 

SAK(2,LAK(lS):20:31)$ 

KAS (KAL ( 2) ,4, KAT (20) :.- 2 : 4 ,1 : 2 ) 

MEL(10:0:5),MELT(10:0:5)$ 



'-) 

-15-

) 3.3.4 Meaning of String Array Declarations. 

The meaning can best be shown in an example: 

The declaration 

STRING ARRAY L(2,M(S):0:3,1:2)$ 

defines 8 strings each of 1ength 7: 

and the 8 

L(O,l) 

L(l,l) 

L(2,1) 

L(3,1) 

substrings 

M(O,l) 

M(l,l) 

M(2,1) 

M(3,1) 

3.4 Other Declarations. 

of 

L(0,2) 

L(1,2) 

L(2,2) . 

L(3,2) 

1ength 5 

M(0,2) 

M(1,2) 

M(2,2) 

M(3,2) 

The following:special declarations are decribed in the sections 

shawn. 

Declaration Section 

FORMAT 8.6.3 
LIST 8.7. 2 
EXTERNAL PROCEDURE 7 . 3. 2 
PROCEDURE 7.1.2 

LABEL 4.6.2 

SWITCH 4.6.3 



-16-

4 EXPRESSIONS. 

4.1 Introduction. 

An expression is a rule for computing a value, or a destination. 

There are 4 kinds of expressions: arithmetic, boolean, string, 

and designational. The constituents of these expressions, ex

cept for certain delimeters, are operands and operators. 

The operands my be constants, variables, or type procedure calls. 

The opera tors may be arithmetic, relational, boolean, and 

sequential. 

Operators cause certain actions to be performed on the 

operands. 

Certain operators may only be used in certain types of 

expressions. 

Parentheses are used as in algebra to group certain operators 

and operands and thus determine the sequence of the operations 

to be performed. Parentheses have a special meaning in 

conditional expressions. 

4.2 Arithmetic Expressions. 

4.2.1 Meaning. 

An arithmetic expression is a rule for computing a numeric 

value. A constant or a simple variable is the simplest form 

of an arithmet~c expression. In the more general arithmetic 

expressions,.which include conditions (if clauses), one out 

of several simple arithmetic expressions is selected on the 

basis of the actual values of the Boolean expressions. 

4.2.2 Types of Values. 

An arithmetic expression may produce a value with one of the 

following types (see section 3.2). 

INTEGER 

REAL 

REAL2 

COMPLEX 



-17-

j 4 . 2 . 3 Ari thmet ic Operands. 

a) Arithmetic Constants 

The type of a constant depends on the form in which it lS 

written. No blanks are al10wed in a constant. 

The fol1owing rules apply. 

Type of Constant 

INTEGER 

REAL 

REAL2 

Rules for Formation 

A string of Il or fewer 

digits possibly preceded 

by a 't' or '-' 

(see also sec. 3.1) 

1. A string of 8 or fewer 

digits with a decimal 

point within the string 

or at either end and 

possibly preceded by 

Examples 

70 

-204 

o 
+ 0 

- 25 

1.2 

.. 1 

-0.111 

75~333333 

+40.0 

a 't' or a '-' +1. 

2. A power-of-ten symbol +&7 

(&) followed by an integer &-2 

indicating the power, and &+6 

possibly preceded by a -&-1 

, +' or '-' 

3. An integer or a real 

number of type (1) 

followed by an exponent 

of type (2) 

1. A number of the same form 

as REAL types (1) or (3) 

but having between 9 and 

16 significant digits. 

2. A number of the same form 

as REAL types (2) or (3) 

1&6 

1.0&6 

-17.446&-3 

+6.&17 

1.2000127211 

-203456789.12 

1.031462873&-22 

1.0&&2 

4&&0 

but using the symbol '&&' +3.1629&&-4 

to mean power-of-ten 0.0&&0 



-18-

Type of Constant Rules for Formation Examples 

COMPLEX Tvro constants of the 

,form for REAL or INTEGER 

separated by a comma and 

enclosed within the sym
bols ,~, and ,~, where the 

first constant represents 

the real part and the 

second the imaginary part 

of the complex constant. 

~+7.0&-2,-2> 

<l,! 0, O. 0:> 

<-2, -1> 

~2.0, -1> 

Notes 1&6 or 1&&6 means lxl0 6 or 1000000.0 

3.1629&&-4 or 3.1629&-4 means 3.1629xlO- 4 or 0.00031629. 

b) ~~f!~~!~9_Y~~~~~!~ê 

Arithmetic variables are those variables which 
have been declared to have one of the types 

INTEGER 

REAL 

REAL2 

COMPLEX 
An arithmetic variable may be simple or subscripted 

(that is, an element of an array). 

c) ~~~!~~~!~q_IYE~_~~~q~~~~~~ 

The declaration of a type procedure is described in 

section 7.2. 

In an arithmetic expression, procedures declared 

to have the following types may be used: 

INTEGER 

REAL 

REAL2 

COMPLEX 

AlI standard procedures (e.g. SIN, COS, ENTIER, LN, 

etc.) which return a value of type INTEGER, REAL, 

REAL2, or COMPLEX may also occur in arithmetic 

expressions. 



-19-

) 4.2.4 Arithmetic Operators. 

) 

a) !~~_QE~E~!9E~' 

The following arithmetic operators are defined in NU ALGOL 

and have the meanings indicated below: 

Operator 

+ 

1 

Il 

Meaning 

If not preceded by an operand then monadic 

plus - that is the following operand has its 

sign unchanged. 

If preceded by an operand and followed by an 

operand then the algebraic SUffi of the two 

operands is to be calculated. 

If not preceded by an operand then monadic 

minus - that is the following operand has 

its sign changed. 

If preceded by an operand and followed by an 

operand then subtraèt the following operand 

from the preceding one. 

The operand preceding the operator is to be 

multiplied by the following operande 

The operand preceding the opera tor is to ·be 

divided by the following operande 

The operand preceding the operator is to be 

raised to the power of the operand following. 

(Note that the preceding operand cannot be 

negative if the ope rand following is not an 

integer) . 

The operand preceding the operator and the 

operand following are both, if nessesary 

converted to type INTEGER. The result of 

this division is then the integral part of the 

quotient. 

(AIIB=SIGN(A/B)HENTIER(ABS(A/B))) 



-20-

Exam12les Result 

+ A 

- B 

A + B 

Do not .change sign of A. 

Cha~ge the sign of B. 

Add B to A. 

A - B Subtract B from A. 

Multiply A by B. A H B 

A 1 B 

A HX' 

A Il 

B 

B 

Divide A by B. 

Raise A to the power B. 

Change A and B to type INTEGER if of type 

REAL or REAL2. Divide A by B. The result 

is the integer part of A/B. 

Note 

If A or B are not of type INTEGER, a 

compilation warning is given since the 

ALGOL 60 report statesthat only INTEGER 

operands may be used. 

b) ~~~~~~~~~~_~f_~~~!~~~!~~_QE~~~!~~~· 

The precedence the arithmetic operators is: 

1. HJ( 

2. H, l, Il 

3. +, -

This means that in a parenthesis-free expression, first 

aIl exponentiations will be carried out (from left to 

right), then aIl multiplications and divisions are 

executed- (also from left to right), and finally aIl 

additions and subtractions are done. Parentheses may of 

course be -inserted in the usual manner to give any d esired 

grouping of subexpressions. (See also sec. 4.4) 



) 

) 

-21-

Examples: 

1. Band Pare operands for K * 
2. A and B * * Pare operands for * 

A + BIC * D 1. Band C are operands for 1 

2. BIC and D are operands for * 
3. A and B/CHD are operands for + 

c) ~~~_~~_~~~~~!~~~~~ 

It is suggested that parentheses by used as rnuch as 

possible to group operations, so that the intended order 

of operations is irnmediately visible to the reader of 

a program. 

4.2.5 Type of Arithmetic E~pressions. 

The value obtained by evaluating an arithmetic expresslon 

has a specifie type according to the following rules. 

Operand Operand following is of type 

preceding 
is of 

type: INTEGER REAL REAL2 COMPLEX 

INTEGER INTEGER REAL REAL2 COHPLEX 

REAL REAL REAL REAL2 COHPLEX 

REAL2 REAL2 REAL2 REAL2 COHPLEX 

COHPLEX COMPLEX COMPLEX COMPLEX COMPLEX 

b) Tvpe of resultino value for operators 1 and ** 
------------~--~-----------------------------

Operand Operand following is of type 

preceding 

is of 

type INTEGER REAL REAL2 COMPLEX 

INTEGER REAL REAL REAL2 COMPLEX 

REAL REAL REAL REAL2 COMPLEX 

REAL2 REAL2 REAL2 REAL2 COMPLEX 

COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX 



-22-

c) tYE~_~~_~~~~~!~~g_~~~~~_!~~_!b~_~E~E~!~~_~~ 

is always INTEGER, if the types of the operand are 

INTEGE~, REAL or REAL2. 

If either of the operands are of any other type, a compik

time error will occur. 

Example: 

If the following declarations are used 

then 

INTEGER 

REAL 
REAL2 

COMPLEX 

Expression 

l * l 

l 1 R 
D + R 

C - D + l 

l ** l 
D Il R 

4.3 Boolean Expressions 

I$ 

R$ 
D$ 

C$ 

has type 
INTEGER 

REAL 
REAL2 

COMPLEX 
REAL 

INTEGER 

~~è~!~g - A Boolean expression is a rule for Computing a 
Boolean value, that is,TRUE or FALSE. 

!~E~_~f_Yè!~~ 

A Boolean' expression may only produce a value of type BOOLEAN. 

~~~!~~~_QE~E~~9~ 

Boolean Constants - are written as the character sequences

TRUE or FALSE for the appropriate values.

Boolean Variables

Boolean variables are those variables whose identi

fiers have been declared to have type BOOLEAN.
They may be simple or subscripted (that i~ a member

of a BOOLEAN array).

)

· -23-

~~~~~~~_!YE~_~E~~~~~E~~ 

The declaration of a type procedure is described in 

section 7.2. 

In a Boolean expression, procedures of type ,BOOLEAN 

may occur. 
The standard procedures which return a value of type 

BOOLEAN (for example ALPHABETIC and NUMERIC) may be 

used in Boolean expressions. 

4.3.1 Boolean Operatn~s. 

a) The following Boolean operators are defined in NU ALGOL 

to have the following meanings only if A and B are BOOLEAN 

expressions. 

BooleanOpe~ators , 
'Expression Meaning .. Value 'of eXPr'esslon 

A=TRUE A=TRUE A=FALSE 

B=TRUE B=FALSE B=TRUE 

NOT A (unary) FALSE FALSE TRUE negation , 

A OR B disjunction ,TRUE TRUE TRUE 

A AND B conjunction TRUE FALSE FALSE 

A IMPL B implication TRUE FALSE TRUE 

A EQIV B equivalence TRUE FALSE FALSE 

~ XOR B exclusive FALSE TRUE TRUE "or" 

1. NOT 

2 • AND 

3. XOR, OR 

4. IMPL 

5. EQIV 

The remarks on the precedence of the arithmetic 

operators"apply also for Boolean operators 

(see sections 4.2.4 and ~.4). 

A=FALSE 

B=FALSE 

" TRUE 

FALSE 

FALSE 

TRUE 

TRUE 

FALSE 



-24-

i 
4.3.2 Relational Operators. 

! 

a) The following relational ope~ators are defined in NU ALGOL 
to have the following meaning. C and D are arithmetic 

or string expressions. 

~ If D or C are of type COMPLEX or STRING only EQL or 
NEQ may be used. 

Relational Operators 

Expression Meaning Value of Expression 

for for f9r 
C > D C = D C < D 

C LSS D LeSS than FALSE FALSE TRUE 

C LtQ D Less than FALSE TRUE TRUE or EQual 
C EQL D EQuaL FALSE TRUE FALSE 

C GEQ D Greater than TRUE TRUE FALSE or EOual 
C GTR 1;) GreaTeR than TRUE FALSE FALSE 

C NEQ D Not EQual TRUE FALSE TRUE 

b) For strings, the comparison to determine equality or non

equality will be made on a character by character basis, 
starting with the leftmost character. If the strings are 
of unequal length, the string of shorter length will be 
considered to be filled with blanks to the length of the 

longer. 

Examples: 

For the following declarations and statements 
STRING 

REAL 
lNTEGER AR RAY 
BOOLEAN 

S = 'ABCDEFG'$ 
lA( -5) = 22$ 

S(7)$ 

X,Y$ 
lA(-5:2)$ 
B$ 
X = 12 4$ 
lA( 0) = 21$ 

y ::: 15 0$ 

B ::: TRUE$ 



\ 

) 

4.4 

\ ,~ 

-25-:--

The eXEression htis the value 

X GTR Y FALSE 

S EQL 'ABCDEF' FALSE 

S NEQ 'ACDEFGA' .TRUE 

IA(-5) LSS IA(O) FALSE 

IA(O) LEQ IA(-5) TRUE 

NOT B FALSE 
.' 

y GEQ X TRUE 

NOT B AND X GTR Y FALSE, 

S EQL 'ABCDEFGt OR S EQL 'Xyzt TRUE 

IA(-5) LEQ 12 IMPL B TRUE 
y GTR 10.0 EQIV X LSS 12.0 FALSE 

NOT B XOR XEQL y FALSE 

Precedence of Arithmetic, Boolean and Relational ·Operators. 

1. ** 
2. HIll 

3. + .... 

4 .• Relational operators LSS, LEQ, EQL, GEQ,.GTR, NEQ 
5. NOT 

6. AND 

7. OR, XOR 
8. IMPL 

9. EQIV 

Operations are carried out inorder of ascending rank 

number. 

Operations of equal rank are carried out from left to right. 

Parentheses may be used to change the order of opera-

tions. The use of parentheses is suggested.to ensure that 

the calculation wanted is the one that is performed. 

(See also section 4.2,4). 

ExampIe: 

BOOLEAN A, B, C, D ,$ 

INTEGER X, Y, Z, W, T $ 

A=A EQIV B IMPL C OR D AND NOT Y+ZHWHHT GTR X $ 



-26-

Evaluation: 

1. WHHT 
2 • ZH(WHHT) 

3 • Y+(ZH(WHHT» 

4. (Y+(ZH(WHHT») GTR X 

5 • NOT (Y+(ZH(WHHT») GTR X) 

6. D AND (NOT«Y+(ZH(WHHT») GTR X» 
7 • C OR (D AND (NOT«Y+(ZH(WHHT») 

8. B IMPL (result 

9 . A EGIV (result 

10. A = (result 

4.5 String Expressions. 

~~~!!!!!g 

of 7)

of 8)

of 9)

GTR X»)

A string expression is a rule for obtaining a string of

characters.

4.5.1 String Operands.

String Constants - are written as a string of characters not
cqntaining a string quote (') and enclosed by string
quote s.

Examples:

'NU ALGOL'
'THIS IS A STRING CONSTANT'

'BAD H ? ! / + - WORDS'

String Variables

String variables are those variables whose identifiers have
been declared to have type STRING.

String variables may be simple or subscripte9, that is, a

member of a STRING ARRAY.

4.5.2 String Operators.

For strings no operatois giving a string result are defined.

)

-27-

Arithmetic operators may be used between string operands

if the string involved contain only digits in the form of

INTEGER constants (including sign).

If the string is not in the form of an integer constant

(either contains non-digits or too many digits) then a

run-time error message will be given.

If the string is in the form of an integer constant then

the value of this integer will be used as the operande

Example:

STRING S(12) $ INTEGER X $

S = 'ANS IS 56345' $

X = S(8,5)+20 $

COMMENT THE VALUE ASSIGNED TO X IS 56365 $

b) ~~~~!~~~~~_gE~~~!~E~.

The equality of strings may be tested using the

relational operators EQL and NEQ. (See section 4.3.2).

4.5.3 Substrings.

~~~I?~~~ 

To refer to a part of a string variable, a substring may be 

used. 

a) ~§91~~§9_§~Qê!~!~g 

Substrings may be declared in the declaration of the main 

string (See section 3.2.2). 

A substring of a main string may be referenced by giving 

a start character number in the main string and the length 

of the substring on the form 

<string identifier>«start character number>,<length 

of substring» 



-28-

Example: 

STRING K(SO)$ 

K(20,6) is a substring referring to characters 20, 21, 22 

2 3, 24, 2 Sin the mai n s tr i n g .K. 

If no length is given, the substring is assumed to consist 

of one character. 

Example: 

K(29) is a substring consisting of character number 29 

in the main string K. 

If no start position or length is given then the main string 

is referred to 

Example: 

STRING K(SO)$ 

K and K(l,SO) are equivalent 

c) ê~~~!E!~g~_9f_~~~e~E~_9f_~!E!~g_~EE~~~· 

A reference to a substring of a subscripted string 

variable is written on the form 

<string array identifier>«start character number>, 

<length of substring>:<subscript, or subscripts 

separated by commas». 

Example :. 

STRING ARRAY SA(10:0:10,1:2)$ defines a string array 

consisting of 22 strings each of 10 characters. 

SA(S,2:l,2) is the substring made up of characters 

Sand 6 of the element SA(1,2). 

SA(lO:O,l) is the substring made of character 10 of 

the array element SA(O,l). 

The declaration of substrings of string array variables 

is described in section 3.3.3 



\ 
~) 

-29~ 

4.6 Designational Expressions. 

ALGOL statements are executed one after another in the order 

they appear in the program, unless a GO TO statement forces 

the execution to begin at a different point in the program. 

This point is given by the value of a designational expression. 

Form 

A designational expression may be either 

i) a label or 

ii) a switch indentifier with an index or 

iii) IF <Boolean expression> THEN <simple designational 

expression> 

EXPRESSION 

ELSE <designational expression> 

where Boolean expression is describe9 ln section 4.3. 

Simple designational expression is either (i) or (ii) or 

(iii) enclosed in parentheses. 

i) A label refers to that point in the program where the 

label is declared (see section 4.6.1). 

ii) A switch idnetifier with an index (say i) refers to the 

designational expression in the i th position of the list 

of designational expressions in the switch declaration 

(see section 4.6.2). If an actual switch index is less 

t than l or greater than the number of designational expres

sions in the list, then GOTO statement is not executed. 

iii) In the case of the designational expression IF <Boolean 

expression> THEN <simple designational expression> ELSE 

<designational expression>, the simple designational ex

pression is used if the Boolean expression evaluated to 

the value TRUE, the designational expression is used if 

the Boolean expression evaluated to the value FALSE. 



-30-

4.6.1 Labels 

~~~2Qê§ 

By the use of a GOTO s,tatement, control may be transferred to

a specifie program point. This program point must th en be given

a name, called a label.

Label Declaration -----------------
Labels are declared by placing an identifier in front of a sat

tement and~ separating it from the statement by the colon symbol

(:) .
Example: LABI x = 5$

Because in NU ALGOL a label is an identifier (see section 2.2),

numeric labels are not allowed.

Only one label with the same identifier may be used within a

block.

Labels are local to the block in which they have been declared.

4.6.2 Switches.

~~EEQ§§

A switch allows the programmer to select a certain label depend

ing on an index.

~h~_§~fIÇB_9~9!~E~!!~~ has the following form

SWITCH<iqentifier>=<list of designational expressions>$

where identifier is as defined in section 2.2. List of designa

tional expressions is a set of designational expressions sepa

rated by commas. Designational expression is described below.

Examples:

SWITCH SlW2 = Pl, IF A GTR 2 THEN L ELSE Z $

SWITCH SlW3 = SlW2(1), SlW2(2) $

COMMENT NOTICE THAT A SWITCH IDENTIFIER WITH INDEX IS A

DESIGNATIONAL EXPRESSION $

---- --

-'31-

.~ 4.7 Conditiona1 Expressions

i
.-/

~~~E~~~ - It is possible to use different operands in an 

expression according to the value of a Boolean expression 

by placing the operands in a conditlonal expression. 

Form - The conditional expression has the form 

IF <Boolean expression> THEN <simple expression> 

ELSE <expression» 

where Boolean expression is described in section 4.3. 

Simple expression is any of the expressions (ar~tmetic, 

Boolean or string) described in section 4, or a conditiona1 

expression enc10sed in parentheses. 

Expression can be either a simple expression as described 

above or a conditional expression. 

a) 
, . . , d hl.. d The slmple expresslon an t e expresslon use ln an 

expression must be of the same kind. Thatis both 

must be of kind arithmetic, boolean, string, or 

designational. 

b) If the 'simple expression' and the 'expression' are 

both of kind arithmetic but are of different types, 

then the value of the expression will have the type 

given by the following table. 

c) Conditional expressions used as operands must be 

enclosed by parentheses. 

Resulting type of expression 

Simple expression Expression has type 

has type INTEGCR Rf.:Al. REAL2 COMPLEX 

INTEGER INTEGER REAL REAL2 COMPLEX 

REAL REAL REAL REAL2 COMPLEX 

iREAL2 REAL2 REAL2 REAL2 COMPLEX 

COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX 



Examp1es: 

BOOLEAN 

REAL 
REAL2 
CaMP LEX 

STRING 

-32-

B$ 
X,Y$ 
D,E$ 
C$ 
LETTERS(14)$ 

x = IF B THEN X EL SE D $ 
t _ ' 

Arithmetic expression of type REAL2 

LETTERS = IF X GTR Y THEN LETTERS (1,4) ELSE LETTERS (4,8)$ 
( ) 

String expression 

B = IF D LSS E THEN NOT B ELSE D LSS E$ 
\ 1 

Boo1ean expression 

C = (IF B THEN (IF NOT B THEN X ELSE y) 

ELSE IF X GTR Y THEN D ELSE E) + 20$ 
\. .... J 

Arithmetic expression of type REAL2 



\j 

-33": 

5 STATEMENTS. 

5.1 Assignment Statements. 

- ------- = V = E$ n 

Where the V. are variables (either simple or subscripted) 
1 

and E is an expression. The sign (=) or (:=) means "becomes" 

or "gets the value of". 

a) ~~!~ê_f9E_E~Ef~E~~~g_~êê~g~~~~! 

If V is a subscripted variable, evaluate its subscript 

expressions, thus determing the actual variable. If there 

is more than one V in the statement, determine the actual 

variables from left to right. 

Evaluate the expression E and assign this value to the 

variable or vari~bles determined by the rule above. 

b) !YE~_E~!~_f9E_~~!!~E!~_~êê~g~~~~!_ê!~!~~~~!ê 

AlI variables in the left part list (Vi) - that is, aIl 

variables to the le ft of the rightmost replacement sign (=) 

must be of the same type. 

Examples: 

INTEGER ARRAY 

REAL 

REAL AR RAY 

A(l:5)$ 

X,Y$ 

Z(3:l0)$ 

INTEGER I,J$ 

l = 5$ J = 4$ COMMENT SIMPLE ASSIGNMENT $ 
A(I) = l = l + J$ COMMENT A(5) GETS THE VALUE 9, 

x = y = I$ 

l GETS THE VALUE 9$ 

COMMENT ONLY VARIABLES IN THE LEFT 

PART LIST MUST BE OF SAME TYPE, HERE 

X BECOMES 5.0, Y BECOMES 5.0$ 



-34-

e) !E~~~f~E_f~~~!!2~~_!~_~~~!g~~~~!_~!~!~~~~!~ 

If the type of the expression is different from that of the 

variable or variables ,in the assignment statement, then auto

matie type transfer oeeurs,if possible,aeeording to the following 

rules. 

Transfer Functions 

Type of Type of Expression 

~ariable INTEGER REAL REAL2 COMPLEX STRING BOOLEAN 

INTEGER Rounded to Rounded to Not Changed to Not 
INTEGER INTEGER Allowed INTEGER Allowed 

if 
:possible 

~EAL Converted Truneated to Not Not Not 
to REAL REAL Allowed Allowed Allowed 

~EAL2 Converted Zero filled Not Not Not 
to REAL2 to REAL2 Allowed Allowed A110wed 

~OMPLEX Becomes Beeomes Truneated Not Not 
real part real part ta real part Allowed Allowed 

of of of COMPLEX 
COMPLEX COMPLEX 

STRING Integer Not Not Not See Not 
is 1eft A110wed Allowed Allowed below Allowed 
justified 
in string 

BJOLEAN Not Not Not Not Not 
Allowed Allowed Allowed Allowed Allo'aë.d 

d) ~!E~~g_~~~!g~~~~! 

If the string expression hasfewer charaeters than the string 

variable, the-remainder of the string variable is fil1ed with 

blanks. 

If the string express~on has more eharacters than the string 

variable then these extra charaeters are not transferred to 

the string variable. 

The assignment is a charaeter by eharaeter transfer starting 

from the leftmost eharaeter. 



j 

/ 

j 

-35-

Note the following example 

STRING ST(15) $ 

ST = 'ABC t $ 

ST(2,14) = ST(I,14) $ 

COMMENT THE RESULT OF THIS ASSIGNMENT IS THAT THE ENTIRE 

STRING ST IS 'AAAAAAAAAAAAAA'.$ 

5.2 GO Ta Statements. 

~~E2~ê~ 

The purpose of a GO TO Statement'isto break the normal 

sequence of execution of statements in a program. 

The statement executed after a GO TO Statement is the state

ment following the labelgiven by the _designational expression 

in the GO Ta Statement. (Labels and designational expressions 

are described in section 4.6). 

Form 

There are three possible ways of writing a GO' TO st~iement. 

AlI have the same meaning. 

GO TO<designational expression>$ 

GOTO <designational expression>$ 

GO <designational expression>$ 

Examples: 

SWITCH KF = XY,ZW $ 

GO Ta XY $ 
S W : GOT 0 KF ( l ) $ 

BOOLEAN B $ 

GO IF B THEN ZW ELSE XY $ 

XY: GO TO IF NOT B THEN KF(2) ELSE SW $ 

5.3 Compound Statements. 

Definition 

A compound statement is a group of ALGOL statements enclosed 

by the words BEGIN and END 



-36-

Action 
--~---

A compound statement'may be wherever one ALGOL statement is 

allowed. 

Use 

Compound statements are very useful in conditional and 

~epetitive statements (see section 5.4 and 5.5) where only 

one statement is allowed. 

Examples: 

BOOLEAN B$ REAL X,Y,Z $ 

IF B 

BEGIN 

END $ 

THEN 

X = 5.0$ 

FOR X = 20.0 STEP l UNTIL 50.0 DO 

BEGIN Y = Y+ X $ Z = X * 20,0 + Z $ 
END $ 

5.4 Conditional Statements. 

~~EE~~~ 

Conditional statements may be used to select the next state

ment depending on the value of a Boolean expression. 

Forms 

There are two types of conditional statements - one with 

alternative and one without. The forms are given below. 

a) Conditional statementWlTHOUT alternative 
-----~-----------------------------~---~-

IF<Boolean expression>THEN<unconditional statement~$ 

where Boolean expression is described in section 4.3. 

An unconditional statement is either any statement other 

than a conditional statement,incluQing a compound state

ment, or a conditional statement enclosed by BEGIN and END. 

Example: 

IF A GTR B THEN A = A - B $ 



\ ) 
--' 

-37-

b) Conditional statement WITH alternative 

IF<Boolean expression>THEN<unconditional statement> 

ELSE<statement>$ 

where Boolean expression is described in section 4.3, 

- unconditional statement is any statement other than a 

conditional statement, including a compound statement. 

Notice that a $ or; must never appear before ELSE. 

- statement is any statement including a conditional 

statement or a compound statement. 

Example: 

IF A GTR B THEN A = A - B ELSE A = B - A '$ 

Actions 

a) Conditional statement WITHOUT alternative 

Boolean expression Action 

evaluates to 

TRUE Execute unconditional state-
.. 

ment after THEN 

FALSE Execute statement after 

conditional statement 

b) Conditional statement WITH alternative 

Boolean expression Action 

evaluates to 

TRUE Execute unconditional state-

ment after THEN 

FALSE Execute statement after ELSE 

" 



-38-

Examples: 

BEGIN 

REAL X,Y$ BOOLEAN B $ 

SWITCH SK = LAB,LIN $ 

IF NOT B THEN X = Y =20.1 $ 

COMMENT B IS FALSE, sa X AND y ARE SET Ta 20.1 $ 
LIN: IF X NEQ Y TH EN B = FALSE 

ELSE B = TRUE $ 
COMMENT X AND y ARE EQUAL, sa B 1S SET Ta TRUE $ 

IF B THEN BEGIN IF X EQL 25.0 TH EN Y = 24.9 END 
ELSE GO Ta SK(2) $ 

COMMENT B IS TRUE BUT X IS NOT EQUAL TO 25.0, SO 

THE NEXT STATEMENT IS EXECUTED $ 

B = FALSE $ 

LAB: IF Y GTR 20.1 THEN GO Ta LIN $ 

COMMENT Y EQUALS 20.1, sa THE PROGRAM FINISHES $ 

END $ 

5.5 Repetition Statements - FOR Statements. 

~~E'E9.~~ 

The repetition statement allows a given statement to be 
executed several times. 

Form 

FOR V = <list of FOR li st elements>DO<statement>$ 
wh~re V must be a variable. This variable is called the 

controlled variable 
~ FOR list element is described below. 
~ statement is one ALGOL statement of any kind, including 

conditional or compound statements. 

Rules for the controlled variable 

The controlled variable may only be of type INTEGER or R~AL. 

If the controlled variable is a formaI paramter, then the type 
of the actual parameter must coincide with that of the formaI. 

When the controlled variable is subscripted, the subscriptCs) 

are evaluated once, before entering the loop. 



-39-

fOR list elements -----------------
There are three kindsof FOR list elements. 

a) ~~_~~~!~~~!~~_~~~~~~~~~~ 

Form 

The for list element is an arithmetic expression of 

type INTEGER or REAL only. 

If the controlled variable is of type INTEGER when an 

expression is of type REAL, the value of the expression 

will be rounded to INTEGER. 

Action 

Step - (The step numbers are used ln the example, as 

weIl as to illustrate the order). 

1. Evaluate the expression. 

2. Assign the value to the controlled variable, con

verting to the type of the controlled variable if 

necessary. 

3. Execute the statement following DO. 

4. If there are no more for li st elements then execute 

the next statement. 

5. If there is another for list element, 

repeat from step 1. 

Example: 

INTEGER A,B,C,TOTAL $ 

A = 10$ B = 5$ 

fOR C = A + 5, A + 20~ B + l, B DO 

TOTAL = TOTAL + C $ 

Action A has the value 10, B the value 5. 

(coutd. on next page) 



-40-

Expression Value of C Value of TOTAL 
Step 

Number Value 0 0 

l l 1'5 

2 15 

3 15 

4 Another for list element follows 

5 2 30 

2 30 

3 45 

4 Another for li st element follows 

5 3 6 

2 6 

3 51 

4 Another for list element follows 

5 4 5 

2 5 

3 56 

4 No more for list elements go to next statement 

~) STEP UNTIL construction 

Form 

There are two forms for this for list element. 

A STEP B UNTIL C 

or 

(A, B, C). 

Notice that if the brackets are not present the latter 

is a group of FOR list elements. 



- ) 

-41-

In both cases A, Band C are aIl arithmetic expressions. 

They may only be of type INTEGER or REAL. If the con

trolled variable is of type INTEGER while any of the 

A, B or C are of type REAL, the value obtained is rounded 

to INTEGER. B is called the step. C is called the limite 

A is called the initial value. 

Action 

1. Evaluate the expression A - calI this value X. 

2. Assign the value X to the controlled variable, con

verting it to the type of the controlled variable if 

necessary. 

3. Evaluate the expressions Band C and convert to the 

type of the controlled variable if necessary. 

4. If the value of B is negative then go to step 6. 

5, If the value of X is greater than the value of C then 

go to step 10, otherwise go to step 7. 

6. If the value of X is less than the value of C then 

go to step ID, 

7. Execute the statement after DO, 

8. Calculate the sum of the value of X and the value of 

B - calI the result of this calculation X. 

9, Start again at step 2. 

10. If there are more FOR list elements start to perform 

them - (note that the controlled variable has been 

stepped) otherwise execute the statement after 

the FOR statement. 

Examples: 

1. INTEGER l $ REAL J,K $ 

INTEGER ARRAY Z(1:4) $ 
J = 10 4 $ K = 20 6 $ l = 2 $ 

FOR Z (1) = J + K STEP - J l UNTIL 41 

DO l = l +A (2) $ 



-42-

Action 

In this example 

the initial value expression A is J + K 

the step B is J 

the limit C is -41 
the controlled variable is Z(2) 

Step Value Value Value Value Value Value Value Value 
of A of B of C X of Z(2) of l of J of K 

Start 0 2 10.4 20.6 

l 30.0 30 

2 $0 

3 -12 -41 -41 
4 Go to step 6 

6 30Clo-41 - do next step 

7 32 

8 18 

9 back to step 2 

2 18 

3 -42 -41 
4 Go to step 6 
6 18>-41 - do next step 

7 50 

8 -24 
9 Go to step 2 

2 -24 
3 -60 -41 
4 Go to step 6 
6 -24>-41 - do next step 
7 26 
8 -84 
9 Go to step 2 

2 -84 
3 -36 .... 41 

4 Go to step 6 

6 -84 <-41 -. (;0 to step ID 
10 No more FOR list elements, go ta next statement 



\ 
) 

-43':" 

2. In a more simple case set aIl members of an array to 

a value 

3. 

REAL D $ 

REAL ARRAY DA(-25 : 20) $ 

INTEGER l $ 

FOR l = (-25,1,20) DO DA(I) = D $ 

Perform a group of statements N times. 

INTEGER I,N $ 

FOR l = (l,l,N) DO 

BEGIN 
READ (X) $ COMMENT WILL READ N CARDS $ 
y = 50 1{ X $ 

WRITE (y) $ COMMENT WILL PRINT N LINES $ 

END $ 

4. Set specifie members of an array to a certain value 

INTEGER l $ REAL ARRAY X(1:200) $ 

REAL R $ 

FOR l = l STEP l UNTIL 5, 8, 9, 20 STEP 10 
UNTIL 60, 100, 200 DO 

XCI) = R $ 
COMMENT X(l), X(2), X(3), X(4), X(5), X(8), X(9), 

X(20), X(30), X(40), X(50), X(60), X(lOO), 

X(200) WILL BE GIVEN THE VALUE OF R $ 

b) WHILE construction 

Form 

<Arithmetic expression>WHILE<Boolean expression> 

where arithmetic and Boolean expressions are as described 

in section 4. 

Action 

1. 

2. 

3. 

4. 

Evaluate the arithmetic expression. 

Assign the value of the arithmetic expression to the 

controlled variable, converting if necessary. 

Evaluate the Boolean expression. 

If the Boolean expression has the value FALSE then 

go to step 7. 



Step 

Start 
l 

2 

3 

4 

5 

6 

l 

2 

3 

4 

5 

6 

l 

2 

3 

4 
7 

-44-

5. Execute the statement after DO. 

6. Go ta step 1. 

7. If there are no more FOR list elements, execute the 

statement after the FOR statement, otherwise take 

the next FOR list el~ment. 

Examples: 

1. INTEGER l, COUNT $ 

STRING S(350), SD(21)$ 

SD = 'OVERWRITE BLANK AREAS' $ 

FOR l = l + l WHILE 8(I) EQL ' , AND l LSS 22 DO 

S(I) = SD(I) $ 

2. This FOR li st element is useful when adding terms into 

a series 

REAL X, TOTAL $ 

X = 25.0 $ 

FOR X = 0.5 * SQRT (X) WHILE X GTR 0.5 DO 

TOTAL = TOTAL +x $ 

Value of Value Value of 

Arithmetic of Boolean 

Expression X Expression 

25.0 

2.5 

2. 5 

TRUE 

Value is TRUE, so do next step 

Go to step l 

.791 

0.791 

TRUE 

Value is TRUE, sa do next step 

Go ta step l 

.445 

.445 

Value 

of 
Total 

0.0 

2.5 

3.291 

FALSE 

Value is FALSE, sa go ta step 7 
No more FOR li st elements, so do next statement 



j 

, -') 

-45-

d) êE~~~~~_E~~~ê_~~E_~2~_~!~!~~~~!~ 

i) Upon exit from a FOR statement either because there are 

no mor8 FOR list elements or because of a GO TO state

ment, the controlled variable has a specifie value. 

This value may be calculated by referring to the rules 

for the type of FOR list element being used. 

ii) A GOTO leading to a label withing the FOR statement is 

illegal. A label may however be used for a jump within 

the statement following DO. 

5.6 Other Types of Statements. 

Input/Output Statements are described in section 8. 

Procedure Statements or calls on procedures which do not have 

a type are described in section 7. 

Blocks as statements - are described in section 6. 

The OPTION feature which may be used like a statement is 

described in section 9. 



-46-

6 BLOCKS. 

~~EJ?9ê~ 

The ALGOL block effects a grouping of a set of variables and 

the statements involving these variables. The block structure 

of ALGOL reflects the dynamic storage of variables, and may be 

used to economize on storage space. An ALGOL program is an 

example of a block. 

Form 

A block has the following form 

BEGIN 

<declarations>$ 

<statements> 

END $ 

Block head 

Block body 

Notice that the only difference between a block and a compound 

statement is that a block has declarations. 

6.1 Nested Blacks. 

A block may appear in the body of another block. This inner 

black is then said to be nested in the outer block. 

Example: 

OUTERBL: BEGIN 

REAL A, B $ 

A = 1.5 $ B = 2.6 $ 

INNERBLl: BEGIN 

INTEGER C, D $ 

C = A + B $ D = A - B $ 
END $ 

A = 50.0 $ 

INNERBL2: BEGIN 

REAL E, F $ 

E = A li B $ F = A/B $ 

END $ 

A = A + B $ 

END $ 



) 
-

-47-

Here the blocks with the labels INNERBLI and INNERBL2 

are nested in the outer block with the label OUTERBL. 

The blocks with the labels INNERBLI and INNERBL2 are 

non-nested. 

6.2 Local and Global Identifiers. 

Consider the following example, where the blocks B2 and B3 

are nested in block BI. 

BEGIN 

BEGIN 

} B2 
END $ 

BI 
BEGIN} 

B3 
END $ 

END $ 

a) Identifiers that are declared ln BI but not in B2 or B3, 

are local in BI and global in B2 and B3. 

b) Identifiers that are declared in B2 are undefined in BI and 

B3. They are local in B2. 

c) Identifiers declared in B3 are undefined ln BI and B3. 

They are local in B3. 

d) If the same identifier is declared in both BI and B2, then 

the declaration in BI 18 ignored within B2. If the idehtifier 

is used in BI or B3, the declaration given in BI will be 

used. 

e) Upon entering a blocks, variables are initialized to 0 if 

arithmetic, to FALSE if Boolean, and to blanks if string. 

Examples: 

1. In the previous example 

BI is the block with the label OUTERBL, 

B2 is the block with the label INNERBLl, 

B3 is the block with the label INNERBL2. 



2 . 

-48-

Identifiers A and B are local to block OUTERBL, and 

global to blocks INNERBLI and INNERBL2. 

Identifiers C and D are local to block INNERBLI and 

undefined in the, other two blocks. 

Identifiers E and F are local to block INNERBL2 and 

undefined in the other two blocks. 

BEGIN 

REAL A $ 

A = 50.0 $ COMMENT HEREA 1S LOCAL AND REAL $ 

BEGIN 

INTEGER A $ 

A = 5 $ COMMENT HEREA 1S LOCAL AND 1NTEGER $ 

END $ 

BEGIN 

A = 25.0 $ COMMENT HEREA 1S GLOBAL AND REAL $ 

END $ 

END $ 

6.3 Local and Global Labels. 

Labels are declared, as explained in section 4.6.2, by placing 

an identifier and a : in front of the statement to which the 

label applies. Labels can·thus be local or global depending 

on where they are declared. 

Only labels which are local or global may be used in a 

designational expression in a certain black. That is, GO TO 

statements may only lead to statements in the same block or 

in an enclosing block, never to statements in a non-nested 

block. 

Note - in NU ALGOL, the outermost black may not have a label, 

since jumps to this label have no meaning. 



-49-

~6.4 Use of Blocks. 

\ 

) 

a) !9_g!~~_!~~_~~!~~ê_!9_~~E~~~ê!9~~_~~_9~~!~~~!!e~~ 

In section 3 - Declarations - it is stated that the bounds 

for arrays, and the length of a string may be arithmetic 

expressions. Variables or type procedures may be used in 

th~se expressions only if they are global to the block ln 

which the declaration appears. 

b) !9_ê~~~_~9E~_ê!eE~g~ 

Non-nested blocks on the same block level use the same 

area of core for the storage of their local variables. 

Examples: 

BEGIN 

INTEGER X,Y,Z,N $ 

READ (X,Y,Z,N) $ 

BEGIN 

REAL ARRAY A(l:X,l:Y), B(l:Y,l:Z) $ 

STRING ST(X+Y+Z-N) $ 

END $ 
BEGIN 

INTEGER ARRAY K(N:X,N:Z) $ 

COMMENT THIS AR RAY USES THE SAME CORE 

AREA AS A AND B IN THE BLOCK ABOVE $ 

END $ 

END $ 



-50-

7 PROCEDURES AND TYPE PROCEDURES. 

7.1 Procedures. 

7.1.1 Purpose. 

When a group of statements are used in several places in a 

program, possibly with different values of the variables, then 

this coding may be written once in a procedure declaration and 

used whenever necessary through the means of procedure calls or 

procedure statements. 

7.1.2 The Procedure Declaration. 

Form 

Procedure 

head 

Procedure 

body 

1 

1 

PROCEDURE identifier (formaI parameter list) $ 

VALUE<identifier list>$ 

<specifications>$ 

{ <statement>$ 

where identifier is as described in section 2.2. 

- formaI parameter is described below. 

specification is described below. 

7.1.3 Identifiers ln the Procedure Body. 

Local 

The statement which is the procedure body may'be a block. 

Identifiers declared in the block are local to the block. 

(See section 6.2). 

Global 

Identifiers declared in the block containing the procedure 

declaration or enclosing blocks are global to the procedure 

body and may be used by the statement. 



~ Example: 

BEGIN $ 

BEGIN 

END $ 

END $ 

-51-

INTEGER, l $ 

PROCEDURE P $ 

INTEGER K $ 

K = 5 $ 

l = l + K $ 

COMMENT PROCEDURE HEAD WITH 

NO PARAMETERS OR SPECIFICATIONS $ 

COMMENT K IS LOCAL $ 

COMMENT l IS GLOBAL $ 

The selection of the actual variables to be used in the state

ment is done when execution of the procedure is involved. 

However, it is necessary to have representative variables in 

the procedure declaration to allow the construction of a correct 

statement. These representative variàbles are called formaI 

parameters. The variables used by the procedure during 

execution are called the actual parameters. 

7.1.4 Specifications. 

~~~E~~~ 

The specifications give the type and kind of the formaI

parameters and may also indicate the modes of transmission

of the actual parameters.

Form

The form of a specification is

<specifier><list of identifiers>$

where the list of identifiers has the usual meaning, except

that in this case the identifiers may only be formaI

parameters.

The following table gives the possible specifiers.

Use the

specifier

INTEGER
REAL
REAL2
COMPLEX
BOOLEAN
STRING

-52-

INTEGER ARRAY

When a formaI para
meter is to be

A simple variable of
the specified type

REAL ARRAY or ARRAY An array of the
REAL2 ARRAY specified type
COMPLEX ARRAY
BOOLEAN ARRAY
STRING ARRAY
LABEL

SWITCH

PROCEDURE

INTEGER PROCEDURE
REAL PROCEDURE
REAL2 PROCEDURE
BOOLEAN PROCEDURE
COMPLEX PROCEDURE
FORMAT

. LIST

VALUE

A label

A switch

A procedure

A type procedure of
the specified type

A format

A list

Special meaning
see section 7,1.7.

Note: The VALUE Specification must come before aIl other

specifications.

/

, ~)

-53-

7.1.5 The Procedure Body.

7.1.6

The procedure body must. be only one statement. This state

ment may be a compounq statement or a blcok.

A formaI parame ter used on the left hand side of an assignment

statement must have a variable for actual parameter.

Example of procedure declaration:

PROCEDURE EXAMPLE (A,B,ANS,C)$

VALUE B $ COMMENT VALUE SPECIFICATION $

REAL ARRAY B $

INTEGER A $

REAL ANS $

LABEL C $

COMMENT OTHER SPECIFICATIONS $

BEGIN COMMENT START OF PROCEDURE BODY $

REAL2 TEMP $ COMMENT LOCAL VARIABLE $

TEMP = B(A) + B(A+l) $

ANS = TEMP/2.0&&4 $

IF ANS LSS 0.0 THEN GO TO C $

END $

Classification of FormaI Parameters.

The formaI parameters may be classified by the way they are

used in the procedure body.

Arguments - are those parameters (variables or type procedures)

which bring into the procedure values that will be used by the

procedure body.

Results - are those parameters which are assigned values ln the

procedure body.

Exits - consist of those formaI parameters which are labels

or switches. Exits may be used as a special way of returning

from a procedure.

Note: A parameter may be bath an argument and a result.

-54-

7.1.7 VALUE Specification.

(The main implications of this specification can be seen in

section 7.1.11 - Execution of a procedure statement).

However, the following kinds of formaI parameters may not be

placed in a VALUE specification.

LABEL, SWITCH, FORMAT, PROCEDURE, LIST

The VALUE specification causes the value or values of the

formaI parame ter to be copied into a termporary area.

These values can then be manipulated or chan~ed without

destroying the values of the actual parameter.

A main advantage of the VALUE specification is that if the actual

parameters are expressions theY,are evaluated only.once.

Example:

PROCEDURE

VALUE N $

COUNT (N,ANS) $

COMMENT N IS AN ARGUMENT WHICH SHOULD
NOT BE CHANGED $

INTEGER N, ANS $ COMMENT ANS IS THERESULT $

BEGIN

INTEGER I,J $

FOR J = N/2 WHILE N NEQ 0 DO.

BEGIN

IF 2HJ NEQ N THEN l = l + l $

N = N//2 $ COMMENT NOTICE THAT THE FORMAL PARAMETER

I8 CHANGED, BUT NOT THE ACTUAL $

END $

ANS = l $

END $

-55-

7.1.8 Comments in a Procedure Head.

COMMENT8 may b~ placed anywhere in the p~ocedure ~eclaration

after the delimiter $or ; (see section 9). Comments may also

be placed in the formà1 parameter list by using the fo11owing

de1imiter instead of a comma.

)string of letters notinc1uding or $ followed by :(

Examp1es:

1. PROCEDURE EXAMPLE .(A,N,S) $

COMMENT N IS THE DIMENSION OF THE ARRAY A

8 IS AN EXIT $

2. PROCEDURE EXAMPLE (A) 18 AN ARRAY WITH DIMENSION (N)

IF ERROR EXIT TO : (S) $

COMMENT THE FORMAL PARAMETERS ARE A,N,S $

7.1.9 The Procedure Statement.

~~EE~ê~

A procedure statement "calls" a declared procedure and transmits
, .

actua1 parameters corresponding to the formaIs of the procedure.

A calI to a procedure will effect the execution of the procedure

body.

Form

<identifier>«actual parameter list» $

where identifier is the identifier of the wanted procedure.'

- actual parameter list is a l{st of variables or expressions.

7.1.10 The Actua1 Parameter List.

The i'th e1ement of the actua1 parameter list corresponds

to the i'th parameter in the formaI parameter liste

-56-

There must be the same number of actual parameters as

there are formaI parameters for a certain procedure.

For type and.kind correspondence of actual and formaI

parameters~ the following rules apply:

FormaI parameter

Simple variable

Array

Label

Switch

Procedure

Type procedure

Actual parameter can be

Simple or subscripted v~riable,con

stan~ or expression of the same

type as the formaI parameter or

of a type that can be converted

to that of the formaI parameter.

(See restriction below).

Array of the same type and with

the same number of subscripts as

the array used in the procedure

body.

Designational expression

Switch

Procedure with a formaI parame ter

list compatible with the list of
actual parametp~R used in the calI
of the formaI procedure.

Type procedure of the same type as

the formaI procedure or of a type
compatible to that of the formaI

procedure and with a formaI para

meter list compatible with the act
ual parameter list used in' the call

of the formaI procedure.
~-------------------------*-----------

Restriction

A formaI parameter used on the left, side of an assigriment state

ment or as the controlled variable in a FOR statement can

only have as actual parameter a simple or subscripted variable, not

-57-

an expression or a constant.

Notice that a formaI parame ter whose actual parameter is a

constant or an expression may be used for temporary storage if

the formaI parameter is VALUE specified. In this case, once

something has been assigned to the formaI parameter, the value

of the actual parame ter is lost to further calculations in the

procedure.

Examples of procedure staterncnts:

1. For the procedure declared ln section 7.1.5.

REAL ARRAY ARY(1:25) $ INTEGER RESULT $

EXAMPLE ~15,ARY,RESULT,Ll) $

LI:

2. For the procedure declared in Section 7.1.7.

INTEGER K,SIZE $

K = 25 $ CaUNT (K,SIZE) $

7.1.11 Execution of a Procedure Statement.

The procedure statement causes the execution of the statement

in the procedure body just as if the procedure statement were

replaced by the statement in the procedure body with the following

modifications.

a) AlI formaI parameters which have not been VALUE specified

(name parameters), are treated as if they were textually

replaced by the corresponding actual parameters in the

procedure body.

b) FormaI paramet~rs which have been VALUE specified are the

evaluated, and these values are assigned ta the formaI

parameters, which are then used in the procedure body.

Examples:

1. Without value specification

COMMENT PROCEDURE D[CLARATION $

PROCEDURE VOLUME CLENGTH,WIDTH,HEIGHT,AN3) $

REAL LENGTH,WIDTH,HEIGHT,ANS $

ANS = LENGTH * WJnTH * HEIGHT $

COMMENT PROCEDURE STATEMENT $

VOLUME (P+5.0,Q+3.1,Z+4.0, RESULT) $

-58-

The procedure staternent isexecuted as if the following

staternent had been written,

RESULT = (P+5.0) H (Q+3.1) * (Z+4.0) $

2. With value specification

PROCEDURE VOLUME (LENGTH,WIDTH,HEIGHT,ANS) $

VALUE LENGTH,WIDTH,HEIGHT $

REAL LENGTH,WIDTH,HEIGHT,ANS $

ANS = LENGTH ~ WIDTH * HEIGHT $

COMMENT PROCEDURE STATEMENT $

VOLUME (P+5.0,Q+3.l,Z+4.0, RESULT) $

The procedure staternent is executed as if the following

block had been written in its place.

BEGIN

REAL LENGTH,WIDTH,HEIGHT $

LENGTH = P+5.0 $

WIDTH = Q+3.l $

HEIGHT = Z+4.0 $

RESULT = LENGTH * WIDTH * HEIGHT $

COMMENT NOTE THAT THE ACTUAL PARAMETER RESULT IS STILL

USED BECAUSE ANS WAS NOT IN THE VALUE SPECIFICATION $

END $

7.1.12 Recursivity.

7 • 2

7.2.1

A procedure may be called within its own procedure declaration.

This feature is known as the recursive use of a procedure and

is fully irnplernented in NU ALGOL.

Type Procedures.

Introduction.

Procedures will often calculate a single value.

Type procedures calculate a value and assign this value

to the identifier given as the narne of the procedure.

AlI of the rules for procedures stated in section 7.1 apply

with a few added rules.

-59-

7.2.2 The Type Procedure Declaration.

<type> PROCEDURE<identifier~«formal parameter list» $

VALUE<identifier list> $

<specifications~$

<statements> $

where - <type> is described in section 3.2.

- identifier is described in section 2.2.

- formaI parameter list, VALUE specifications are

described in sections 7.1.

The statement should contain an assignment statement which

assigns a value to the identifier used as the name of the

procedure.

7.2.3· Use of a Type Procedure.

A type procedure may be used as an operand in an expression

by using the following construction

<identifier>«actual parameter list»

(See also section 4 concerning operands in expressions).

In its declaration, the type procedure identifier may be used

~n an expression. This use is recursive because the procedure

uses itself in the calculation. (See 7.1.11).

The standard procedures (library functions) are examples of type

procedures. However, the standard procedures do not have ta be

declared.

Examples:

1. COMMENT TYPE PROCEDURE DECLARATION $

REAL PROCEDURE VOLUME (LENGTH,WIDTH,HEIGHT) $

VALUE LENGTH,WIDTH,HEIGHT $

REAL LENGTH,WIDTH,HEIGHT $

VOLUME = LENGTH * WIDTH * HEIGHT $

COMMENT USE OF A TYPE PROCEDURE $

P= 5.0 .. $ Q = 3.0 $ Z = 4.0 $
WRITE (VOLUME (P+5.0,Q+3.l,Z+4.0» $

This statement is executed as if the following block had been

written:

-60-

BEGIN

REAL LENGTH,WIDTH,HEIGHT,VOLUME $

LENGTH = P+S.O' $

WIDTH = Q+3.1 $

HEIGHT = Z+4. 0 $'

VOLUME = LENGTH * WIDTH * HEIGHT $
WRITE (VOLUME) $

END $

7.3 External Procedures.

7.3.1 Introduction.

~§§_~~_~~!§E~~~_2E~~~~~E~~'

External procedures allow the user to build a library of proce

dures which are useful to him and which can be easily accessed

by declaring the required procedure to be EXTERNAL PROCEDURE.

Definition.

External procedures are procedures whose bodies do not a~pear

in the main program. They are compiled separately and linked

to the main pro gram at its execution.

7.3.2 External Beclaration.

Use

The external declaration informs the compiler of the existence

of external procedures, of their type (if any), and of,the

proper manner to construct the necessary linkages.

Form

EXTERNAL <kind><type> PROCEDURE <identifier list> $

<type> is as defined in section 3.2.

If no type is given, then the external procedure is a pure

procedure as described in section 7.1.

<kind> can be empty , AL.GOL, FORTRAN, SLEUTH, or LIBRARY.

<empty> or ALGOL means an external procedure in the ALGOL

language. These are treated just like ordinary

procedures declared within the program~

FORTRAN means an external procedure written in the

FORTRAN language.

"\

\'-)

-61-

SLEUTH and

LIBRARY

means that the external procedure is written

in the machine language SLEUTH II.

The following descriptions, require an adequate knowledge of the

EXEC II monitor syste~, FORTRAN and SLEUTH II.

7.3.3 ALGOL External Procedures.

Form

An ALGOL procedure declaration (see section 3) may be compiled

separately if an E option (See section 9 .2) is used on

the ALGOL processor card.

Several procedures may be compiled using the same ALGOL

processor card. A program containing externally compiled

procedures does not require an enclosingBEGIN-END pair.

An ALGOL procedure compiled in this way'will have 6nly the

first six charac~ers of the prdc~dure na me marked as an entry

point in the PCF.

Such a procedure may be referenced from another ALGOL pro gram

as an external procedure if the appropriate declaration and

identifier is used.

Examples:

1. The externally compiled procedure.

VE ALG <name>

PROCEDURE RESIDUES (X,Y)$

VALUE X,Y; REAL X,Y;

BEGIN

END$

The main program

V ALG <main name>

BEGIN

EXTERNAL PROCEDURE RESIDUES$

REAL A,B$

RESIDUES (A,B)$,

END$

-62-

2. . The externally compiled procedure.
VE ALG <name>

REAL PROCEDURE DETCA,N)$
VALUE A,N$
REAL ARRAY A$
INTEGER N$
BEGIN
COMMENT THIS PROCEDURE FINDS THE DETERMINANT Of A
REAL NxN MATRIX A, LEAVING A UNCHANGED AND ASSIGNING
THE VALUE TO DET$

DET=---$
END DET$

The main program
V ALG <main name~

BEGIN
REAL ARRAY MATRIX C1:10,1:10)$
EXTERNAL REAL PROCEDURE DET$

WRITE(DET(MATRIX,lO»$

END OF MAIN PROGRAM$

7.3.4 FORTRAN Subprograms.

A FORTRAN SUBROUTINE or a FORTRAN FUNCTION may be made
available to an ALGOL pro gram by the dec1aration

EXTERNAL FORTRAN <type> PROCEDURE~identifier list>

where type is described in section 3.2 and identifier

list in section 2.2.

~!~2~~9_E~E~~~!~E~

Actual parameters in calls on such FORTRAN subprograms

may be either expressions, arrays or labels. Procedures,
string arrays,format$ and l~sts may not be used. -Strings
may be used if the FORTRAN program handles them correctly.

-63-

The address of the string itself, not of the string descriptor,

is transmitted. Labels may be used only if they are local.to

the block where the calls occurs.

~iff~r~~9~§_9~!~~~~_Ig·E!~6~_f~~9!i9~_~~9_§~Qr9~!!~§

The inclusion of <type> in the declaration implies that the

FORTRAN subprogram begins with <type> FUNCTION <name>. The

absençe of <type> implies that the FORTRAN subprogram begins

with SUBROUTINE <name>.

Example:

FORTRAN subprogram

V FOR <namel>

FUNCTION DET (A,N)

DIMENSION A (N,N)

C DET FINDS THE DETERMINANT

C OF A REAL NxN MATRIX A,

C DESTROYING A (SINCE 'VALUE' IS

C NOT ALLOWED IN FORTRAN), AND

C ASSIGNING THE VALUE TO DET

DET=--
END

ALGOL mainprogram

V ALG <name2>

BEGIN
ARRAY MATRIX (1:10,1:10)$

EXTERNAL FORTRAN REAL' PROCEDURE DET$

WRITE (DET(MATRIX,lO))$

END OF MAIN PROGRAM$

7.3.5 Machine Language Procedures

Use

For certain special applications (for example, bit manipulation),

machine language procedures are necessary. These available the

use of the EXTERNAL SLEU1H or the EXTERNAL LIBRARY declarations.

-64-

Recursive and non-recursive ---------------------------
The following remarks apply only to non-recursive machine lang

uage procedures. The required information for writing recursive

machine language proce,dures may be found in the ALGOL technical

documentation.

If <type> is used in the EXTERNAL procedure declaration, the

value of the procedure must be left in register AD for single

word length types (BOOLEAN, INTEGER, REAL) and AD and Al for

double word length types (COMPLEX, REAL2).

Only the volatile registers (BII,AD,AI,A2,A3,A4,AS,Rl,R2,R3)

may be used without restoring.

The first six characters of the name in the identifier li st of

the EXTERNAL PROCEDURE declaration must be the first six charac

ters of the external entry point of the machine language pro

cedure.

S{mple strings and aIl arrays including string arrays used as

parameters require special handling as explained in the next

sections.

1. Method of para

. meter transmis

sion

2. Security

SLEUTH

By means of parameter

descriptors in core

LIBRARY

Parameter addresses or

values are delivered

through the arithmetic

registers.

Checking of the legal- Full checking lS done

ity of the actual par- at compiletime.

ameter list must be

done at run-time in

the SLUTH procedure.

-65-

SLEUTH LIBRARY

3 . Speed of para- Fairly slow because of Fast bec&use values of

meter transmis- the need for indirect correct type and kind

sion

4. Flexibility

5. Example

Declaration:

CalI:

addressing and run':"time

checking.

Complete information

available at run-time

about the parameters.

EXTERNAL SLEUTH

PROCEDURE ES$

ES (A,B)$

A and B may be of

any type or kind.

7.3.5.1 The External SLEUTH Procedure

are delivered through

registers.

Less flexible because

allowable actual para

meters are determined

at compile-time.

EXTERNAL LIBRARY

PROCEDURE EL(X,Y)$

REAL X,Y$$

EL(A,B)$

A and B must be REAL

EXTERNAL SLEUTH <type> PROCEDURE <identifier list> $

Examples:

EXTERNAL SLEUTH PROCEDURE BIT, PACK $

EXTERNAL SLEUTH COMPLEX PROCEDURE ARRAYSUM$

The calI to a procedure which has been declared as an EXTERNAL

SLEUTH PROCEDURE produces the following coding.

F5 FORM 30,6

FI FORM 6,6,6,18

LMJ Bll,<procedure name>

F5

FI

<not used> , <number of parameters>

<type>,<kind>,<base register>,<relative data address>;

-66-

FI is the parameter descriptor. There is one for each para

meter in the calI.

<type> can have the following values and meanings

l INTEGER

2 REAL

3 BOOLEAN

4 COMPLEX

5 REAL2

7 STRING

<kind> can have the following values and meanings

l Simple, constant, expression or subscripted.variable

5 ARRAY

9 LABEL

The absolute data address (ADA) or location of the parameter

is found from

<absolute data address>=<relative data address> + contents of

(base register}

The <base register>:field may be·zero ln which case nothing

should be added ·to the data address.

Note that for aIl simple expressions the <absolute data address>

contains the value of the parameter. For strings it contains

the <string descriptor>. For arrays it contains the first word

of the <array descriptor>.

FormaI parameters may not be used as actual parameters to the

calI of a SLEUTH procedure.

~~~'~~!}_2~~!}! 

The return point for a calI with N parameters lS the contents 

of register BII + N + 1. 

Example: 

CalI: 

Return: 

BIT (X,Y,Z,D,E,F)$ 

J 7,Bll 



) 

-67-

Values of parameters should be obtained by the use of an ln
direct commando 

Example: 

CalI: PACK(A,B,C)$ 

To load value of B: L A2,~2,Bll 

. If C is a label exit to C is J *3,BII 

See sec. 7.3.5.3, 7.3.5.4 and 7.3.5.5 for description of 
STRING, ARRAY and STRING ARRAY parameters respectively. 

Machine Language Program: 

V ASM <namel> 
. THE FOLLOWING PROGRAM HAS NO PURPOSE 

. OTHER THAN TO ILLUSTRATE THE ABOVE NOTES 

$(1) EQUIV SET UP MNEMONICS 

· HAS THE CALL EPS(INT,STRING,EXIT LABEL)$ 

L,Tl Al,l,Bll. PICK UP TYPE AND KIND 

TE,U Al,OlOl. IF NOT SIMPLE 

J *3,BII. INTEGER GO TO ERROR EXIT 
L 

TG,U 

J 

L,Tl' 

TE,U 
J 

L,H2 

L 

J 

THE NEXT ROUTINE 

AO,xl,Bll. 

AO,1024. 

x~,Bll. 

Al,2,Bll. 

AI,0701. 

*3,BII. 
Al,iE2,Bll. 

A5 , l,Al. 

4,Bll. 

PICK UP VALUE OF INTEGER 

IF THE INTEGER GEQ 1024 
THEN GO TO ERROR EXIT 

PICK UP TYPE/KIND FOR 
SECOND PARAMETER 

IF NOT SIMPLE STRING 

THEN GO TO ERROR EXIT 
PICK UP ADDRESS FROM STRING 
DESCRIPTOR 

PICK UP SECOND WORD OF STRING 
RETURN WITH AO CONTAINING 
THE ACCEPTABLE INTEGER 

HAS· THE CALL TIMER (ARRAY IDENTIFIER, ROW, COLUMN, ANSWER) 

THIS ROUTINE MULTIPLIES THE FIRST THIRD 
OF THE SPECIFIED ARRAY ELEMENT-BY ·3600 



~6 8--

. THE SECOND THIRD BY 60 AND ADDS THE 

. RESULTS TO THE THIRD THIRD 

TIMER* L AO,xl,Bll. GIVES ADA 

L A3,x3,Bll. PICK UP COLUMN 

MSI,Hl A3,1,AO. MULTIPLY BY D2 
A A3,x2,Bll. ADD ON ROW 

A,Hl A3,0,AO. ADD ON BA 

L,H2 Al,O,AO. PICK UP FA 

AU,Hl Al,O,Al. ADD LENGTH TO FA 

TW Al ,A3 . IF ELEMENT NOT IN ARRAY 

J MERR$ . GO TO SYSTEM ERROR EXIT 

L,Tl AO,0,A3. PICK UP FIRST THIRD 

MSI,U AO ,6 O. MULTIPLY BY 60 

A,T2 AO ,0 ,A3 . ADD ON SECOND THIRD 

MSI,U AO,60. MULTIPLY BY 60 

A,T3 AO,0,A3. ADD ON THIRD THIRD 

S AO,*4,Bll. STORE RESULT IN 

J 5,Bll. FOURTH PARAMETER AND 
END. 

Main Erogram: 

'V ALG 

BEGIN 

<name2> 

EXTERNAL SLEUTH INTEGER PROCEDURE ESP$ 

EXTERNAL SLEUTH PROCEDURE TIMER$ 
INTEGER INT$ 
STRING SOUT(4,SIN(7))$ 

INTEGER ARRAY Al(1:50,0:10),RESULTS(-5:12)$ 
WRITE(ESP(INT,SIN,ERR))$ GO TO Ll$ 

ERR: WRITE ('WRONG PARAMETER')$ 

LI: TIMER(Al,5,9,RESULTS(12))$ 

END$ 

RETURN 



) 

,J 

-69-

7.3.5.2 The External LIBRARY Procedure 

Declaration -----------
In order to make possible the compile-time checking of the 

parameters, the declaration of a LIBRARY procedure must con

tain specifications. The specification list is terminated by 

; or $. The LIBRARY procedure therefore has the appearance of 

an ALGOL procedure with an empty body. 

The form of the declaration is: 

EXTERNAL LIBRARY<type>PROCEDURE<identifier>«formal para

meter list»$ 

<value part> 

<specification part>$ 

Example: 

CalI 

EXTERNAL LIBRARY INTEGER PROCEDURE COM(I,BI,CA)$ 

VALUE I,BI$ 

INTEGER I$ 

BOOLEAN BI$ 

COMPLEX ARRAY CA$$ 

When a library procedure is called, parameter values or aàdresses 

are loaded into consecutive arithmetic registers. If the formaI 

parameter isby value, the value of the actual parameter lS 

loaded, otherwise the address of the parameter is loaded. The 

first parameter goes into AD, the second into Al and so on. 

REAL2 or COMPLEX parameters called by value, occupy two conse

cutive registers. The number of parameters allowed in the calI 

is therefore limited by the number of arithmetic registers avai

lable and can at most be 16. 

Generally the typ~ and kind of the formaI and actual parameter 

.must be the same. However, if the formaI is a simple value pa

rameter~ the actual parameter need only be ccnvertible to the 

formaI type. A label must be local to the block where the calI 

occurs. 



S FormaI 

value 
simple 

simple 
not by 
value 

value 
string 

string 
not by 
value 

array 

label 

-70-

The table below shows possible combinations of formal and 

actual parameters and the corresponding content of the arith

metic register. Blank fields indicate illegal combinations 

which will give compile-time errors. 

simple or 
formal string array 

1 formal subscr. ex- formal formal 
value name constant variable IPression dnd and non-

simple non-
simple formal formal 

value of value of value of ·value of value of 
parameter parameter constant parame':- expres-

ter sion 

adcl.ress address 
of of 

parameter parameter 

The 
string 
descrip-
tor. Sec. 
7 ~ S ~ 

address 
of the 
string 
descrip-
tor. Sec. 
7 . 3 • 5 . 3 --

address 
of the 
array 
descrip-
tor.Sec. 
7.3.5.4 

Return from a LIBRARY procedure lS always to O,Bll. 

local 
label 

1 

pro-
gram 
addresE 



/ 

\ 

) 

-71-

Example: 

\j ALG MAIN 

BEGIN 
COMMENT THIS EXAMPLE SHOWS HOW TO PACK THREE INTEGER NUMBERS 

INTOONE 1107/1108 COMPUTER WORD IN ORDER TO SAVE CORE SPACE, 

AND THEN UNPACKING THEM AGAIN FOR COMPUTATION. FOR SUCH 

PACKING THE NUMBERS MUST HAVE ABSOLUTE VALUES LESS THAN 2047. 

LARGER NUMBERS WILL BE TRUNCATED; 

INTEGER I,J,K,M,N; 

INTEGER ARRAY NUMBERS (1:10000); 

EXTERNAL LIBRARY PROCEDURE PACK (N,I,J,K); 

VALUE I,J,K; 
INTEGER N,I,J,K; 

COMMENT THE PROCEDURE PACKS I,J,K INTO N; 
'i! 

EXTERNAL LIBRARY PROCEDURE UNPACK (N,I,J,K); 

INTEGER N,I,J,K; 
COMMENT THE PROCEDURE UNPACKS N INTO I,J,K;; 

COMMENT READ 30000 NUMBERS FROM CARDS; 

FOR M = (1,1,10000) DO 

BEGIN 
READ(I,J,K); PACK(NUMBERS(M),I,J,K); 

COMMENT THE CALL ON PACK WILL GENERATE THE FOLLOWING 

SEQUENCE: 

L AO,<address of array element> 

L Al,I~B2 

.L A2 ,J ,B2 
L A3,K,B2 
LMJ Bll,PACK 

END; 
COMMENT DO SOME CALCULATIONS; 
FOR M=(1,1,5000) DO 
BEGIN 

UNPACK(NUMBERS(M),I,J,K); 

COMMENT THE CALL ON UNPACK WILL GENERATE: 

L 

L,U 

AO,(address of array element> 

Al,I,B2 

L,U A2,J,B2 



-72-

L,U A3,K,B2 

LMJ Bll,UNPACK 

N = l + J x K; 

UNPACK(NUMBERS(lOOOO-M),I,J,K); 

N = N x K Il l + J; 

WRITE(N) ; 

END; 

END MAIN PROGRAM; 

'ïJ ASM PUNP 

EQUIV. 

PACKx. 

S,Tl 

S,T2 

S,T3 

J 

UNPACK*. 

L,Tl 

S 

L,T2 

S 

L,T3 

S 

J 

END. 

Al, ° ,AO. 
A2 ,0 ,AO. 

A3,0,AO. 

O,Bll. 

A4, ° ,AD. 
A4,0,Al. 

A4, ° ,AD. 
A4,0,A211 

A4,0,AO .. 

A4,0,A3" 
0,Bl1, 

l GOES INTO Tl 

J GOES INTO T2 

K GOES INTO T3 

RETURN TO MAIN PRO GRAM 

GET NUMBER IN Tl 

STORE INTO l 

RETURN TO MAIN PROGRAM 

7.3.5.3 String Parameters 

The absolute data address is the location of the string 

descriptor • The string descriptor can be described as follows 

where 

F4 FORM 12,6,18 

F4 <length>,<start>,<address> 

<length> is the number of characters in the string. 

<start> is the start position of the string in the first 

word used Sl=O, S2=1, S3=2, .S4=3, S5=4~ S6=5 

It will be different from zero only for substrings. 

<address> is the· location of the first word used for the 

string. 



-73-

~/ 7.3.5.4 Array Parameters 

,j 

The absolute data address (ADA) 

is the start address of the array descriptor. 

The array descriptor has the following format. 

Address Hl H2 • 

ADA BA FA 

ADA+I D2 D3 Dope vector elements -
ADA+2 D4 D5 as many as required 

ADA+3 D6 D7 maximum of 9 since the 

ADA+4 D8 D9 maximum number of dimen-

ADA+5 DIO sions is 10. 

BA - Base Address lS the value to be added to the calcu

lated subscript to give the exact location of the 

element. 

FA - First Address is the absolute address of the check 

word which stands just before the first element in 

the array, 

Dn - are the "dope vector elements" which are only present 

if the array has more than one dimension, 

Their use is explained by the following algorithme 

For an array with n dimensions the element with subscripts 

81 , 8 2 , 8 3 , .. 8n has the following address 

<absolute address of array element (81 ,8 2 , .• ,8n »= 
(:.«8 HD +8 I)HD 1+ 8 2)HD 2, •. )HD 2.+81 +BA n n n- n- n- n-

For COMPLEX or REAL2 arrays the algorithm has the form 

<absolute address of double array element C8 1 ,S2,·.,8n »= 
( 2* [( . , ( (8 liD + 8 l ) HD 1+ 8 2 ) HD 2 ' · · ) HD 2 + 8}J + BA n n n- n- n- n-

Example: 

The array element A(I,J,K) has the address 

(KHD3+J)liD2+I+BA. 



-74-

Checkword 

The checkword at location FA has the fo11owing format. 

F3 FORM 
F3 

18,18 

<length of array in machine words> , 

<not used> 

7.3.5.5 String Array Parameters. 

The absolute data address (ADA) 

is the start address of the string array descriptor. 

The string array descriptor has the following format. 

Address 

ADA 

ADA+l 

ADA+2 

ADA+3 

ADA+4 

ADA+5 

ADA+6 

<Relative string descriptor> 

Same as words ADA through ADA+5 

for ordinary arrays 

The relative string descriptor has the fol1owing form 

where 

F4 FORM 
F4 

<length> 

<start> 

<relative 

position> 

12,6,18 

<length>,<start>,<re1ative position> 

is the number of characters in the 

string. 

is the start position of the string 
in the first word it occupies. 
Sl=O S2=1 S3=2 S4=3 S5=4 ·S6=5 
(not 0 on1y for subarray e1ements) 

is the amount to be added ta the 

address given in the string des

criptor to get the address of the 

first word containing the string. 

The address of an element is calculated in the same way 

as for ordinary arrays. 



\ 

) 

-75-

An element in a string array is a string descriptor 

F4 FORM 12,6,18 

F4 <length~,~start>,<address of string> 

where <length> and <start> have the same meaning as above. 

In the case of a main string they will have the same values 

as wellt. 

address of string is the location of the first 

word used for the main string. 

To find the address of the first word used for a substring, 

it is necessary to add the address of string to the 

relative position. 

Example: 

STRING ARRAY Sl(7,S2(5,S3(4»,2:1;2,1:5)$ 

EXTERNAL SLEUTH PROCEDURE XYZ$ 

XYZ(Sl,S2,S3)$ 

ADA for SI 18 1 0 0 

BA FA 
D2 

ADA for S2 9 Il 1 

BA FA 
D2 

ADA for S3 4 
1 0 2 

BA FA 
D2 



-76-

FA 10 8A = 8tart address 

18 0 -SA 
18 0 8A+3 

18 0 8A+6 

18 0 8A+9 

18 0 SA+12 

18 0 8A+15 

18 0 8A+18 

18 0 8A+21 

18 0 8A+24 

18 0 8A+27 

SA 
! 

81(6,1:1'11~ 81(1,1:1,1) 81(2,1:1,1) Sl(3,l:1,1) 81(4,1:1,1)l Sl(5,1:1,1) 
1 

Sl(7,1:1,1) 81(8,1:1,1) 81(9,1:1,1) 81(10 81(11 81(12 

82(1,1:1,1) 82(2,1:1,1) 82(3 82(4 82(5 

81(13 81(14 Sl(15 Sl(16 Sl(17 Sl(18 

82(6 82(7 S2(8 S2(9 

S3(1 S3(2 S3(3 S3(4 

SA+3 Sl(1,1:2,1 81(2 

l, 

l 



-77-

j 7.4 Standard Procedures. 

'J 

\j 

7.4.1 Available Procedures. 

The following procedures are available for use without 

declaration. Also sorne identifiers with special meaning are 
listed. 
These names are not reserved identifiers and may be redefined 

in any block, 

X is used to me an the value of the first parameter, 

y the second. 

Number Types Result 
Name of of or 

Parameters Parameters Use 

ABS l INTEGER The absolute value of 

REAL the parameter 

REAL2 

COMPLEX 

ALPHABETIC l STRING TRUE if the string 

consists only of spaces 

or alphabetics (A- Z) , 

FALSE otherwise. 

ARCCOS 1. INTEGER 

REAL arc cos (X) 

REAL2 arccos (X) 

ARCSIN l INTEGER 

REAL arcsin (X) 

REAL2 arcsin (X) 

ARC TAN l INTEGER 

REAL arctan (X) 

REAL2 arctan (X) 

CARDS 0 To specify to the input 

routine that the device 

is the card reader or 

to the output routine 

that the device is the 

the card punch 

Type 
of 

Result 

INTEGER 

REAL 

REAL2 

REAL 

BOOLEAN 

REAL 

REAL2 

REAL 

REAL2 

REAL 

REAL2 



-78-

Number Type 
Name of of 

Parameters Parameters 

CBROOT l INTEGER 

REAL 

REAL2 

COMPLEX 

CHAIN l INTEGER 

CLOCK 0 

COMPL 2 1. INTEGER 

REAL 

REAL2 
2. INTEGER 

REAL 

REAL2 

COS l INTEGER 

REAL 

REAL2 

COMPLEX 

COSH l INTEGER 

REAL 

REAL2 

COMPLEX 

DISCRETE 2 1. REAL 

ARRAY 
2. INTEGER 

DRAW 2 1. REAL 
2. INTEGER 

Result 
of 

Use 

cube root of X 

cube root of X 

cube root of X 

calls in link X in MAP 

Present time of day in 

seconds since midnight. 

For example at 13:30 

the result is 48600 

A complex number with 

the real part equal 

to X and the imaginary 

part equal to Y. 

Exam}21e: 

COMPL(1,2) glves the 
complex number 
<1.0,2.0> 

cos (X) 

cos (X) 

cos (X) 

cosh (X) 

cosh (X) 

cosh (X) 

Drawing from a dis crete 

(cumulative) 

distribution function 

(For full description 

see sec. 7.4.2) 

TRUE with the 

probability X, 

FALSE with the 

Type 
of 

Result 

REAL 

REAL2 

COMPLEX 

INTEGER 

COMPLEX 

REAL 

REAL2 

COMPLEX 

REAL 

REAL2 

COMPLEX 

BOO LEAN 

probability l-X (sec. 7.4.2) 



Name 

DRUM 

DRUMPOS 

DOUBLE 

ENTIER 

EOF 

Eor 

ERLANG 

EXP 

,_J 

Number 
of 

Parameters 

o or l 

o 

l 

l 

o or l 

o 

3 

l 

-79-

Type 
of 

Parameters 

INTEGER 

INTEGER 

REAL 

REAL 

REAL2 

INTEGER 
REAL 

STRING 

1. REAL 

2. REAL 
3. INTEGER 

INTEGER 

REAL 
REAL2 
COMPLEX 

Result 
of 

Use 

Gives input/output 

Type 
of 

Result 

routine dccess ta rela
tive address X of rand am 
drum. If X not specified 
then the next relative 
address available lS used. 

Gives next relative drum INTEGER 
address 

Value of type REAL2 

Largest integer r such 

that l < X 

Example: 
ENTIER(-O.99) is -1 

Used by WRITE and 
POSITION (See sec. 8.4.5) 

Only the first 6 charac
ters of the string are 
used. 

Used by WRITE and 

POSITION (See sec. 8.4.6) 

A drawing from the 

, REAL2 

INTEGER 

Erlang distribution REAL 
with mean l/X and stand-

ard devitation l/XfYï 

(For full description 
see sec. 7.4. 2 ) 

exp (X) REAL 

exp (X) REAL2 

exp (X) COMPLEX 



Number 
Name of 

Parameters 

HISTD 2 

HISTO 4 

lM l 

INT l 

KEY o or l 

LENGTH l 

-80-

Types 
of 

Parameters 

1. REAL 

ARRAY 

2. INTEGER 

1. REAL or 

lNTEGER 

ARRAY 

2 . REAL or 

INTEGER 

ARRAY 

3 • REAL 

4. REAL 

COMPLEX 

REAL 

REAL2 

STRING 

INTEGER 

STRING 

Result 
or 

Use 

A drawing from a histo

eram 

(For full description 

see sec. 7.4.2) 

Ta update a histogram 
according to observa-

tian (third parameter) 

with the weight the 

fourth parame ter (For 

full description see 

sec. .7.4.2) 

Imaginary part of the 

complex number X 

Value of type INTEGER 

Used by WRITE and 

POSITION (See sec. 8.4.4) 

Only the first 6 charac-

ters of the string are 

used. 

Number of characters in 

the string including 

blanks. 

Exam121e: 

STRING S(42)$ 

LENGTH (S) has the value 
42 

Type 
of 

Result 

INTEGER 

REAL 

INTEGER 

INTEGER 



-81-

Number Types 
Name of of 

Parameters Parameters 

LINEAR 3 1. REAL 

ARRAY 

2. REAL 

ARRAY 

3 . INTEGER 

LN l INTEGER 

REAL 

REAL2 

COMPLEX 

MARGIN 3 or 4 1. INTEGER 

2 . INTEGER 

3 . INTEGER 

4. STRING 

MAX List of INTEGER 

expressions REAL 

(any number) 

MIN List of INTEGER 

expressions REAL 
(any number) 

MOD 2 1. INTEGER 
REAL 

\ 
\J REAL2 

2 . INTEGER 

REAL 

REAL2 

Result 
or 

Use 

A drawing f!"'om a 

(cumulative) distri

bution using linear 

interpolation in a non

equidistant table, (for 

full description see 

sec. 7.4.2).' 

ln (X) 

ln (X) 

ln (X) 

To change ·the 

vertical dimensions 

on a printer page 

(see·sec. 8 . 8 . 5 ) . 

Algebraic largest ele-

ment of list 

ExamI21e: 

Value of MAX(FOR I= 

(1,1,99) DO I) is 99.0 

Algebraic smallest 

element of list 

ExamI21e: 
Value of MIN 

(1.2,3.3,-8.6,-99.2,-

4,0) is -99.2 

If REAL or REAL2 then 

round x and y ta nearest 

integer, then the expres-

sion X-ENTIER(X/Y)xY is 

computed. 

Example: 

Value of MOD(-48,5) 18 2 

Type 
of 

Result 

REAL 

REAL 

REAL2 

COMPLEX 

REAL 

REAL 

REAL 

REAL 

INTEGER 



Number 
Name of 

Parameters 

NEGEXP 2 

NORMAL 3 

NUMER:tC l 

POISSON 2 

POSITION special 

list 

PRINTER o 

PSNORM 4 

-82-

Types 
of 

Parameters 

1. REAL 

2. INTEGER 

1. REAL 

2. REAL 

3. INTEGER 

STRING 

1. REAL 

2. INTEGER 

1. REAL 

2. REAL 

3. INTEGER 

4. INTEGER 

Result 
or 

Use 

A drawing fpom the 

negative exponential 

distribution with mean 

l/X (for full descrip

tion see sec. 7.4.2). 

Type 
of 

Result 

REAL 

A drawing from the nor- REAL 

mal distribution with 

mean X and standard 

deviation Y. (See 
sec. 7.4.2). 

TRUE if string has the 

form of an integer, 

FALSE otherwise. 

A drawing from 

the Poisson distribution 

(See sec. 7.4.2). 

To position a tape 

(See section 8.8.3). 

To assign the printer 

as device to the WRITE 

procedure 

An approximate drawing 

from the normal distri

bution with mean X and 

standard deviation y 

(See sec. 7.4.2) 

BOOLEAN 

INTEGER 

REAL 



Number 
Name· of 

Parameters 

RANK l 

RANDINT 

RE 

READ 

REWIND 

REWINT 

SIGN 

3 

l 

Special 

list 

l 

l 

l 

-83-

Types 
of 

Parameters 

STRING 

1. INTEGER 

2. INTEGER 

3. INTEGER 

COMPLEX 

TAPE 

TAPE 

INTEGER 

REAL 

REAL2 

Result Type 
or of 

Use Result 

The field data equi- INTEGER 

valent of the first non-

blank character of the 

string. 

Example: 
STRING S (12) $ 

S=' D' $ 

RANK(S) will have the 

value 9 (D=118)' 

A drawing of one of the INTEGER 

integers between X and 

y with equal probability 

(See description in sec. 
7.4.2), 

The real part of the 

complex nwnber X. 

To bring input from a 
specified device 

To rewind a tape 

To rewind a tape and lock 

Value of Value of 

X SIGt:r ,X2 
X>O l 

x=o 0 

X<O -1 

Exam121e: 

Value of SIGN(128) is l 

REAL 

INTEGER 



-84-

Number Types Result Type 
Name of of or of 

Parameters Parameters Use Result 

SIN l INTEGER 
REAL sin eX) REAL 

REAL2 sin eX) REAL2 

COMPLEX sin eX) COMPLEX 

SINH l INTEGER 

REAL sinh ex) REAL 

REAL2 sinh ex) REAL2 

COMPLEX sinh (X) COMPLEX 

SQRT l INTEGER 

REAL IX' REAL 

REAL2 1)(1 REAL2 

COMPLEX vT COMPLEX 

TAN l INTEGER 

REAL tan eX) REAL 

REAL2 tan eX) REAL2 
COMPLEX tan (X) COMPLEX 

TANH l INTEGER 

REAL tanh eX) REAL 

REAL2 tanh (X) REAL2 
COMPLEX tanh ex) COMPLEX 

TAPE l INTEGER To specify which tape 

STRING or sequential drum file 

an input or output 
routine should use. 

UNIFORM 3 REAL The value is uniformly REAL 

REAL distributed in the 

INTEGER interval [X, Y> . eSec.7.4.2). 

WRITE Special To send output 

list to a specified device 



-85-

7.4.2 Special Routine Descriptions. 

Included in the run-time system of this ALGOL are many of the 

Random Drawing and sorne of the Data Analysis routines of 

SIMULA (O.J. Dahl, K. Nygaard: Simula. NCC. Sept.1967, ch. 7-8), 

The following descriptions explain their uses and methods. 

a) Pseudo-random Number Streams 

AlI randomdrawing procedures of SIMULA use the same technique 

of obtaining basic drawings from the uniform distribution in 

the interval <0,1>. 

A basic drawing will replace the value of a specified integer 

variable say, U, by a new value according to the following 

algorithme 

U
i

+l = remainder «U
i 

x 5 2p+l ) //2 n ), 

where U. is the i'th value of U. 
l 

It can be proved that, if Uo is a positive odd integer, the 

same is true for aIl Ui' and the s~quence UO' Ul' U2 , --- is 

cyclic with the period 2n-2 (The last two bits of U remain 

constant, while the other n-2 take on aIl possible combina

tions). In UNIVAC 1107/l108 we have n = 35. P is chosen 

equal to 6. 

-n The real numbers u· = U. x 2 are fractions in the range <0,1>, 
l l 

The sequence u l ' u 2 , --- is called a stream of pseudo-random 

numbers, and u. (i = 1,2, ---) is the result of the i'th basic 
l 

drawing in the stream U. A stream is completely determined 

by the initial value Uo of the corresponding integer ~ariable. 

Nevertheless it is a "good approximation" to a sequence of 

truly random drawings. 

By reversing the sign of the initial value Uo of a stream 

variable the antithetic drawings l - u l ' l - u 2 ' --- are 

obtained. In certain situations it can be proved that means 

obtained from samples based on antihetic drawings have a 

smaller variance than those obtained from uncorrelated streams. 

This can be used to reduce the sample size required to obtain 

reliable estimates. 



-86-

b) ~~~9~~_~~~~!~g_~~~~~~~~~~ 

The following procedures aIl perform a random drawing of some 

kind. Unless otherwise is explicitly stated the drawing is 

effected by means of one single basic drawing, i.e. the 

procedure has the side effect of advancing the specified 

stream by one step. The necessary type conversions are 

effected for the actual parameters, with- the exception of 

the last one. The latter must always be an integer variable 

specifying a pseudo-random number stream. AlI parameters 

except the last one and arrays are called by value. 

1. Boolean procedure draw (a, U); real a; integer U; 

The value is true with the probability a, false with the 

probability l - a. It is always true if a ~ l, always 

false if a < O. 

2. integer procedure randint (a, b, U); integer a, b, U; 

The value is one of the integers a, a + l, ---, b - l, 

b with equal probability. It is assumed that b > a. 

3. real procedure uniform (a, b, U); real a, b; integer U; 

The value is uniformly distributed in the interval [a, b>. 

It is assumed that b > a. 

4. real procedure normal (a, b, U); real a, b; integer U; 

The value is normally distributed with me an a and standard 

deviation b. An approximation formula is used for the 

normal distribution function: 

See M. Abramowitz & I.A. Stegun (ed): 

Handbook of Mathematical Functions, National Bureau of 

Standard Applied Mathematics Series no. 55, p. 952 and 

C. Hastings formula (26.2.23) on p. 933. 

5. real procedure psnorm (a, b, c, U); real a, b; integer c, U; 

The value is formed as the SUffi of c basic drawings, suit

ably transformed sa as to approximate a drawing from the 

normal distribution. The following formula is used: 



-87-

c 
a + b ({ E 

i=l 
u.) - c/2)/12/c 

l: 

This procedure is faster, but less accurate than the 

preceding one. c is assumed <12. 

6. real procedure negexp (a, U); real a; integer U; 

The value is a drawing from the negative exponential dis

tribution with mean lIa, defined by -ln{u)/a, where u is 

a basic drawing. This is the same as a random "waiting 

time" in a Poisson distributed arrivaI pattern with expected 

number of arrivaIs per time unit equal to a. 

7. integer procedure Poisson (a, U); real a; integer U; 

The value is a drawing from the Poisson distribution with 

parameter a. It is obtained by n+l basic drawings, u i ' 

where n is the function value. n is defined as the smallest 

non-negative integer for which 

n 
JI 

i=O 
u. 

1. 
< -a e 

The validity of the formula follows from the equivalent 

condition 

n 
E 

i=O 
-ln{u.)/a> l, 

1. 

where the left hand side is seen to be a sum of "waiting 

times" drawn from the corresponding negative exponential 

distribution. 

When the parametera is greater than 20.0, the value is 

approximated by integer {normal (a,sqrt{a),u)) or, when 

this is negative, by zero. 

8. real procedure Erlang (a, b, U); value a, b; real a, b; 

integer U; 

\_J .The value is a drawing from the Erlang distribution with 

mean lIa and standard deviation l/{a ~). It is defined 

by b basic drawings u., if b is an integer value, 
1. 



-88-

In(u.) 
l , 

and by c+l basic drawings u. otherwise, where c is equal 
l 

to entier (b), 

c 
E 

i=l 

ln (u.) 
l (b-c) 

a-b 

Both a and b must be greater than zero. 

9. integer procedure discrete (A, U); array A; integer U; 

The one-dimensional array A, augmented by the element l to 

the right, is interpreted as a step function of the sub

script, defining a discrete (cumulative) distribution 

function. The array is assumed to be of type real. 

The function value is an integer in the range [lsb, usb+l], 

where lsb and usb are the lower and upper subscript bounds 

of the array. It is defined as the smallest i such that 

A(i» u, where u is a basic drawing and A (usb+l) = 1. 

10. real procedure linear (A, B, U); array A, B; integer U; 

The value is a drawing from a (cumulative) distribution 

function F, which is obtained by linear interpolation ln 

a non-equidistant table defined by A and B, such that 

A (i) = FCB(i)). 

It is assumed that A and B are one-dimensional real arrays 

of the same length, that the first and last elements of A 

are equal to 0 and l respectively and that A Ci) > A (j) 

and B Ci) > B Cj) for i > j. 

Il. integer procedure histd (A, U); array A; integer U; 

The value is an integer in the range [lsb, usbJ, where 

lsb and usb are the lower and upper subscript bound of the 

one-dimensional array A. The latter is interpreted as a 

histogram defining the relative frequencies of the values. 



\- -) 

-89-

This procedure is more. time~consuming than the procedure 

discrete, where the cumulative distribution function is 

given, but it is more useful if the frequency histogram 

is updated at run-time. 

12. procedure histo (A, B, c, d); arra~ A, B; real"c, d; 

will update a histograrn defined by the one-dirnensional 

ar~ays A and B according to the observation c with the 

weight d. A (i) is increased by d, where i is the smal

lest integer such that c ~ B (i). It is assumed that the 

length of A is one greater than that of B. The last ele

ment of A corresponds to those observations which are 

greater than aIl elements of B. The procedure will accept 

parameters of any combination of real and integer types. 

7.4.3 Tranfer Functions. 

Transfer functions are those functions used to "transfer" a 

value of one type to another type. These functions are 

evoked automatically by the compiler whenever necessary. 

In sorne cases, they may be called explicitly. Note that 

transfer functions are not evoked automatically when the for

maI and actual types for array identifiersa~e not the same. 

Type of variable Transferred to type Function used 

INTEGER REAL Implicit 

REAL2 Implicit 

STRING Implicit 

COMPLEX COMPL(X,O) or Implicit 

REAL INTEGER INT(X) or implicit 
REAL2 Implicit 

COMPLEX COMPL(X,O) or Implicit 

REAL2 INTEGER INT(X) or implicit 

REAL Implicit 

COMPLEX COMPL(X,O) or Implicit 

COMPLEX REAL RE(X) 

IM(X) 

STRING INTEGER INT(X)"or implicit 



~90-

8 INPUT/OUTPUT 

8.1 Introduction 

Form 

AlI input/output statements are of the form 

<1/0 procedure>«device>,<format>,<modifierlist>, 

<input/output list>,<label list»$ 

This chapter is organized in such a way that the parameters 

<device>,<modifier list>,<label list>,<format> and <input/ 

output list> are described in separate sections. 

Each of the proced~res is then described in terms of the 

parameters it requires. 

Example: 

BEGIN FORMAT FORMI (A,3RIO.2)$ 

REAL X,Y,Z$ 

ARRAY ARRY (1:200)$ 

WRITE (TAPE('A'),EOF('ABC'),LABLl,ARRY)$ 

READ (CARDS,FORMl,LABL2,LABL2,X,Y,Z)$ 

READ (CARDS,X,Y,TAPE(12) ,ARRY) $ 

COMMENT MORE THAN ONE DEVICE ALLOWED$ 

Method ------

The available input/output procedures are: 

Procedure Section 

READ 8.9 

WRITE 8 . 8 

"" 
POSITION 8.10 

REWIND 

~ REWINT 8.11 

Classed as tape 

operations 



, ) 

-91-

8.2 Parameters ta Input/Output Statements 

The procedures a110w a variable number of parameters. In 

the simplest case only the input/output list needs to appear. 

The other parameters are then automatically supplied by the 

compiler. See sec. 8.8. 

Example: 

FORMAT F(10I12,Al)$ 

INTEGER ARRAY A(-6:3)$ 

WRITE (A) $ 

WRITE (PRINTER,F,A)$ COMMENT THESE TWO ARE THE SAME$ 

WRITE (CARDS,A)$ 

WRITE (CARDS,F,A)$ COMMENT THESE TWO ARE THE SAME$ 

The order of parameters lS very important. In beneral, aIl 

statements should have their parameters in the order given 

by the form of sec. 8.1 .. 

If this order is not observed, the following rules hold. 

a) Labels may come anywhere and need not to be together. 

However, their order is important. (See section 8.5, 

label list) .. 

b) If device lS not before the input/output list, then the 

device is assumed to be implied device. (See section 

8.3.3, implied device). 

c) The insertion of more device calls in an 1/0 statément 

changes the device. 

Example: 

ARRAY A(0:500)$ 

WRITE ( A , T AP E ( , B ' ) ,A) $ 

COMMENT WILL WRITE ARRAY A ON THE PRINTER AND ON 

THE MAGNETIC TAPE ASSIGNED AS B $ 



-92-

d) Modifiers may be placed where desired. Thatis, KEY 

will usually come beforè the output list and EOF 

after it, but notice the following example. 

Example: 

ARRAY A(0:500),B(G:300)$ 

WRITE(TAPE('B'),KEY('A'),A)$ 

WRITE(TAPE('B'),EOF('A'),KEY('B'),B,EOI)$ 

COMMENT THE TAPE WILL HAVE 

1. KEY RECORD WITH IDENTIFICATION 'A' 

2 . THE VALUES OF THE ARRAY A 

3 . EOF RECORD WITH IDENTIFICATION 'A' 

4. KEY RECORD WITH IDENTIFICATION 'B' 

5. THE VALUES OF THE ARRAY B 

6. AN EOI MARKER$ 

e) Formats must come before the input/output list to 

which they apply. If a list cornes before a format 

parameter has been specified, then the format is 

taken to be implied or free format. 

Example: 

INTEGER I,J,K$ 

REAL 

FORMAT 

1=123$ 

X,Y,Z$ 

F(3DIO.6,Al)$ 

J=456$ K=789$ 

WRITE (I,J,K,F,I,J,K)$ 

COMMENT WILL PRODUCE THE FOLLOWING PRINT LINES$ 

123 456 789 

123.00000 456.00000 789.00000 

f) Formats must come after the device to which they 

apply. 

g) Input/output lists have their position determined by 

the fact that they must conform to the above rules. 



) 

-93-

8. 3 Deviees 

8.3.1 Possible Deviees 

The possible deviees are 

Deviee Section 

8.3.2 Aetual Deviees 

Deviee 

(implied) 

CARDS 

PRINTER 

TAPE 

DRUM 

CORE 

Examples: 

(implied) 

CARDS 

PRINTER 

TAPE 

DRUM 

CORE 

Actual deviee 
with READ 

Card reader 

Card reader 

Not allowed 

Tape unit or 

drum file 

specified 

Random aeeess 

drum file 

The string whieh 

is parameter 

INTEGER 1$ 

READ (CARDS,I)$ 

8.3. 3 

8 . 3 . 4 

8 . 3 . 5 

8 . 3 . 6 

8 . 3 . 7 

8 . 3 . 8 

Aetual device 
with WRITE 

Line printer 

Card punch 

Line printer 

Tape unit or 

drum file 

speeified 

Random aceess 

drum file 

The string which 

is parameter 

READ(I)$ COMMENT ARE THE SAME$ 

Aetual device 
with POSITION, 
REvJIND ~_ REWINT 

Not allowed 

Not allowed 

Not allowed 

Tape unit or 

drum file 

speeified 

Not allowed 

Not allowed 



-94~ 

8.3.3 Implied Deviees 

Use 

For reading cards or printing. 

Form 

The device parameter is left out. 

Action with READ 
------~-~-~-----

Sarne as for device CARDS. 

Action with WRITE -----------------
Same as for device PRINTER. 

Restrictions 

i) Cannot be used with TAPE operations. 

ii) On input only 80 columns may be read from a cardo 

iii) On output only 132 columns may be printed. 

Example: 

INTEGER A,B,C,D$ 

FORMAT Fl(A,3(I12,XlO»$ 

RE AD (Fl,A,B,C)$ 

COMMENT WILL READ CARDS$ 

8.3.4 Deviee CARDS 

Use 

For reading or punching cards. 

Form 

CARDS 

Action with RE AD 

The card reader is assigned as the device for the procedure 

READ to use for input. 

Note: If a format is specified, no new card is read until an A 

phrase (activate) is met i~ a format or a format extends 

beyond column 80 of the current cardo The very first data 

card, however, will be read automatically in the absence 



-95-

of an A-phrase. 

B~:E~~9!!}g 

Reading card images over again is possible by using a format 

without an activate phrase. 

Example: 

BEGIN 

COMMENT READ THE SAME CA RD IN THREE DIFFERENT WAYS$ 

ARRAY A,B,C(1:5)$ 

FO RMA TF1 ( A , 515 ) , , 

F2(Jl,5Il) , 

F3(Jl,512)$ 

COMMENT NOTE THAT J-PHRASE MUST BE USED TO START 

AT COLUMN ONE$ 

READ (Fl,A,F2,B,F3,C)$ 

END$ 

Data Card 

1234567891011121314151617 

Action: 

At the end the arrays will have the fol1owing values: 

A(l) 12345.0 B(l) 1.0 C(l) 12.0 
A( 2) 67891.0 B(2) 2 . 0 C(2) 34.0 

A( 3) 1112.0 B(3) 3.0 C(3) 56.0 
A( 4) 13141.0 B(4) 4.0 C(4) 78.0 

A( 5) 51617.0 B(5) 5.0 C(5) 91.0 

Action with WRITE 

The card punch is assigned as the device for the procedure 

WRITE to use for output. 

Example: 

FORMAT F(I12,Al)$ 

INTEGER 1$ 

1=-8523$ 

WRITE (CARDS,F,I)$ 

COMMENT WILL PUNCH ONE CARD WITH -8523 IN COLUMNS 8 

THROUGH 12$ 



-96-

Restrictions ----_ ..... - ...... ---
i) Cannot be used with the tape operations. 

ii) On both input and output there is a maximum 1ength of 

80 co1umns. 

8.3.5 Deviee PRINTER 

Use 

For printing on printer. 

Form 

PRINTER 

Action with WRITE -----------------
The 1ine printer is assigned as the device for the procedure 

WRITE to use for output. 

Note: If a format is specified, no 1ine is printed unti1 an 

activate (A) phrase is processed. The A-phrase may be 

de1ayed unti1 a 1ater WRITE-statement. 

Examp1e: 

INTEGER I,J$ 

WRITE (PRINTER, «I15,A1,I6»,I,J)$ 

COMMENT J 18 NOT PRINTED$ 

WRITE (PRINTER,«I10,A1»,I)$ 

COMMENT PRINT8 J AND 1 ON THE SAME LINE$ 

Restrictions -------------
i) A run-time error lS caused if PRINTER is used with READ 

or the tape operations. 

ii) One 1ine has 132 co1umns. 

Examp1e: 

ARRAY A(-5:6)$ 

INTEGER X,Y$ 

FORMAT F1(12(Ill,X1),A1)$ 

WRITE (PRINTER,F1,FOR 1=(-5,1,5) DO A(I))$ 



8 ~ 3. 6 

/ 

-97-

Deviee TAPE 

Use 

For doing operations with magnetic tapes or sequential drum 

files. 

Form 

TAPE «parameter» where <parameter> can be 

i) non-negative integer constant or expression which is the 

index in the range 0 to 20 to the Y$TTAB table given 

below. 

ii) string in which the first character is the logical unit 

designation for an assigned magnetic tape. 

Examples: 

ARRAY A(0:500)$ INTEGER 1$ 

1=0$ 

WR1TE (TAPE('A'),A)$ 

WR1TE (TAPE (O),A)$ 

WR1TE (TAPE (I),A)$ 

COMMENT PROVIDE ALL THE SAME ACTIONS$ 

~~~U~Dg_Qf_E~E~~~t~rê 

The parameter is an index to an installation defined Y$TTAB

table.

Note: 1t lS possible for the user to supply his own Y$TTAB

table - perhaps redefining sorne of the drum areas.

However this should only be done with the help of the

systems programmer for his installation.

The following is the implemented Y$TTAB table.

Note that the drumfiles occupy the same area as the peF, and

processor scratch.

-98~·

Y$TTAB

Parameter
Meaning Integer String

0 'A' Use magnetic tape assigned as A

1 'B' assigned as B

2 'c' assigned as C

3 'D' assigned as D

4 "E'. assigned as E

5 'F' assigned as F

Tape
simulating Drum layout

files

6 t Whole

7 Not lst half

8 2nd half

9 Allowed lst quarter

10 2nd quarter

Il 3rd quarter

12 4th quarter

13 lst eighth

14 2nd eighth

15 3rd eighth

16 4th eighth

17 5th eighth

18 6th eighth

19 7th eighth

20 '\' 8th eighth

1l.ction with READ and WRITE
--~~~-------~~-~-~~--~----

Assign the spedified magrietic tape unit or sequential

arum fil~ to be used by READ or WR1TE for input or output.

Example:

REAL2 ARRAY D(0:400)$ INTEGER 1$

READ (TAPE(20),FOR I=(1,1,320) DO D(1))$

WR1TE(TAPE('A'),FOR 1=(1,1,300) DO D(1))$

j

-99-

Action with REWINT
------~-----~---~-

If the parameter refers to a magnetic tape then this

tape is rewound and released so that it can no longer

be used.

If the parameter refers to a sequential drum file 5

then the current position of this file is reset to the

starting position.

Example:

INTEGER 1$

FOR 1=(0,1,20) DO REWINT (TAPE(I))$

COMMENT WILL REWIND AND RELEASE MAGNETIC TAPES 'A'

THROUGH F AND RESET Ta THE START DRUM FILES 6
THROUGH 20$

Action with REWIND

For magnetic tapes, the tape is rewound but not

released so that it may be used again.

The action for sequential drum files is the same

as for ·REWINT.

Example:

BOOLEAN DRUMORTAPE$

DRUMORTAPE=TRUE$

REWIND (TAPE(IF DRUMORTAPE THEN 0 ELSE 6))$

COMMENT WILL REWIND TAPE ASSIGNED AS A$

The specified magnetic tape or sequential drum file is

assigned to the procedure POSITION. It will then be

searched according to certain parameters. This operation

is covered in section 8.10.

Example:

POSITION (TAPE('D'),EOF)$

-100-

Restrictions -.-------
i) The sequential drum files can only be accessed in a

seriaI manner. If random access is required, device

DRUM must be used.

ii)

iii)

Deviee TAPE does not allow READ or WRITE to use a format.

To write formatted output one can use WRITE (CORE (S) , ...)

and then output the r~sulting string.

The input list (see section 8. 7) used with device TAPE

must have its number of elements less than or equal to

the number of elements in the output list which produçed

the record being read.

If the number is greater a run-time error occurs.

If the input list is smaller than the output list then

the remainder of the record is lost.

iv) If the integer expression used as parameter to TAPE has

a value greater than 20 or less than 0, a runtime error

occurs.

v) The expression used as parameter to TAPE must not be a

type procedure.

vi) The format of records for device TAPE are compatible

with both UNIVAC ALGOL and FORTRAN.

Examples:

ARRAY A,B (1:500)$

INTEGER 1$

FORMAT F(10R12.4,Al)$

READ (TAPE(6),A)$ COMMENT TRANSFERS 500 WORDS FROM

THE DRUM FILE KNOWN AS TAPE(6) TO THE ARRAY A$

WRITE (TAPE('E'),FOR 1=(1,1,250) DO B(I»$

WRITE (TAPE('E'),FOR 1=(251,1,500) DO B(I»$

REWIND (TAPE('E'»$

READ (TAPE('E'),FOR 1=(1,1,200) DO A(I»$

READ (TAPE('E'),FOR 1=(251,1,500) DO A(I»$

COMMENT A(201) TO A(250) WILL NOT BE CHANGED WHILE THE

VALUES B(201) TO B(250) TO B(250) ON TAPE WILL BE LOST$

-101-

8.3.7 Deviee DRUM

Use

To use the randorn access drurn file.

Forrn

DRUM «aritrnetic expression» or DRUM

i) The arithrnetic expression indicates the relative address

of that part of the drurn which has been set aside for

randorn access.

Exarnple:

REAL X,Y,Z$

INTEGER 1$

1=50$

WRITE (DRUM(I),X,Y,Z)$

COMMENT WILL WRITE THE VALUES OF THE VARIABLES X,

Y,Z IN RELATIVE ADDRESSES

50,51 AND 52 OF THE DRUM$

ii) If no pararneter is given then the pararneter refers to

next relative address of the randorn drurn file.

Exarnp1e:

COMMENT THIS STATEMENT COMES IMMEDIATELY AFTER THE

ONES ABOVE$

READ (DRUM,X,Y,Z)$

COMMENT VALUES ARE TRANSFERRED TO X,Y,Z FROM

RELATIVE ADDRESSES 53, 54 AND 55$

, iii) The drurn address rnay be set to a specified position

prior to a READ/WRITE-staternent by the staternent:

DRUM«arithrnetic expression»$

~his procedure obtains the next relative drurn address.

-J Exarnp1e:

WRITE (DRUM(lOO),X,Y,Z);

I=DRUMPOS;
COMMENT l NOW HAS THE VALUE 103;

-102-

Action with WRITE
--~-~------~-----

The values of the variables of the output list are transferred

to consecutive positions in the random drum file area starting

at the relative address specified by the parameter given to

the procedure DRUM~ If no parameter is given then the start

is the next relative address.

The values of the consecutive positions ~n the random drum

file starting with the relative address specified by the

parameter to DRUM are transferred to the input list variables.

If no parameter is given th en the start is the next relative

address.

Restrictions

i) DRUM may not be used with the tape operations.

ii) To determine the relative address after a WRITE using

DRUM it is necessary to know the following lengths.

Va,riable T'lue

INTEGER

REAL

BOOLEAN

REAL2

COMPLEX

STRING

of k characters

SUBSTRINGS

of length k which

start at charac

ter p in a word

(O'sPSS)

L~ngth in words

l

l

1

2

2

ENTIER«~+S)/6)+1

ENTIER «p+k+S)/6)+1

iii) DRUM and TAPE (6 through 20) share an area on drum.

The user should ensure that they do not overwrite

each other. They both overwrite the PCF area.

-103-

Examp1es:

BEGIN
INTEGER I$
REAL R$
BQOLEAN B$
REAL2 D$
COMPLEX C$
STRING S(15)$

WRITE (DRUM(l),I,R,B,D,C,S)$
COMMENT THE NEXT RELATIVE DRUM ADDRESS IS 12$

END$

Drum Notes

i) Parameters in a 1ist are automatically placed in

consecutive locations on the drum.

Example:

WRITE (DRUM(O),A,B,C,-----)
and

WRITE (DRUM(0),A,DRUM(1),B,DRUM(2),C,-----)

do exactly the same operation - BUT the first case

is much faster.

ii) Because of the mechanism used for writing drum -

writingbackwards on drum is extremely inefficient.

Example:

WRITE (DRUM(25),Z,DRUM(24),Y,DRUM(23),X-----)$

COMMENT - IS VERY SLOW$

iii) Arrays are normally transferred without being

decomposed into their elements. For this reason,

statements which decompose an array are very inefficient

in comparison.

-104-

Examp1e;

ARRAY A(1;500)~ INTEGER 1$

WRITE (DRUM,A)$ COMMENT IS VERY FAST $

WRITE (DRUM,FOR 1=1,1,500 DO A(I))$

FOR 1=1,1,500 DO WRITE(DRUM,A(I))$

COMMENT THE LAST TWO STATEMENTS ARE VERY SLOW$

8.3.8 Deviee CORE

Use

To a110w editing to and from a string without using

an externa1 device.

Form

CORE «string expression»

Action with WRITE

The, output 1ist is edited according to the given or

imp1ied format into the string supplied as the parameter
to CORE.

Example:

BEGIN
STRING S(24)$

FORMAT F(6I4,A)$
INTEGER ARRAY A(1:6)$

INTEGER 1$
FOR 1=(1,1,6) DO A(I)=I$
WRITE(CORE(S),F,A)$

COMMENT WILL CAUSE S TO BE FILLED AS IF THE
FOLLOWING ASSIGNMENT HAD TAKEN PLACE

S=' 1 2 3 4 5 6'$
END$

Action with READ

The string is edited according to the given or imp1ied
format and the values assigned to the input liste

-105-

Examp1e:

BEGIN

STRING S(14)$ INTEGER 1$ REAL R$

FORMAT F(A,D12.2,I2)$

S=' 1234.5678421'$

READ (F,CORE(S),R,I)$

COMMENT R NOW HAS THE VALUE 1234.56784 AND l

HAS THE VALUE 21$

END$

Restrictions

i) CORE cannot be used with the tape operations.

ii) On input (READ) on1y 80 characters may be edited.

iii) On output (WRITE) on1y 132 characters may be edited.

iv) The entire string is used by CORE.

Example:

STRING S(30)$

S(27,3)='ABC'

WRITE (CORE(S),1,2)$

COMMENT THE 'ABC' HAS BEEN CLEARED TO BLANKS$

v) Note that nothing is transferred to or from the

stringunti1 the activate (A) phrase is reached in

the format specified,

vi) If no format is specified the ru1es for free

format (See Section 5.3) are applied.

8.4 Modifier List

The modifier list contains directions as ta the type of

markers to be uSêd with device TAPE.

-106-

8.4 .. 1 Possible Modj.fiers - ,-----

Modifier Section

Eor

Eor (..::parameter »

-Eor > 8 . 4 . 5

-Eor (r<;parameter»

KEY

KEY «parameter»

-KEY >- 8.4.4

-KEY (<;parameter»

EOI

-EOI
,. 8.4.6

<integer expression> 8.10

8.4.2 General description

The modifier list ~ontains a directive to output a

certain marker which later can be searched for using

action POSITION.

The modifier li st contains the marker to be searched

for.

8.4.3 Restrictions

The modifier list cannot be used with.the operations

READ, REWIND or REWINT.

-107-

Modifiers can on1y be used with device TAPE.

Certain tape units cannot be positioned backward.

TYPE OF TAPE UNIT CAN BE POSITIONED BACKWARDS

II A YES

III A YES

III C NO

IV C NO

VI C NO

VIII C YES

Vio1ating this ru1e causes a run-time error.

8.4.4 Modifier KEY

Use

To specify that a KEY record with a certain identification

lS to be output or searched for.

Form

KEY «parameter» or KEY

-KEY «parameter» or -KEY

The parameter can either be an arithmetic expression or a

string expression. When the parameter is a string, on1y the

first six characters are used. If the string is shorter, it

is space fi11ed up to six characters.

The minus (-) sign specifies the backwards

used with POSITION. It has no meaning for

Note that KEY means the same as KEY (0)

-KEY means the same as -KEY (0)

Example:

WRITE (TAPE(O),KEY('ABCDEF'))$

WRITE (TAPE(O),KEY('ABCDEFGHK'))$

direction when

WRITE.

COMMENT WILL PROCEDURE TWO IDENTICAL KEY RECORDS$

-108-

Example:

POSITION (TAPE('A'),KEY)$

POSITION (TAPE('A'),KEY(O))$

COMMENT HAVE THE SAME MEANING$

Action with WRITE
---~-~---~-------

A KEY record with its identification glven by the parameter

is output on the tape or sequential drum file.

Example:

INTEGER I,J,K,L,M$

WRITE(TAPE('F'),I,J,K,L,M,KEY(I))$

COMMENT THE KEY RECORD COMES AFTER THE RECORD$

REWIND (TAPE('F'))$

READ (TAPE('F'),I,J,K,L,M)$

COMMENT WILL READ THE VALUES INTO I,J,K,L,M IGNORING

THE KEY RECORD$

Action with RE AD
---~-~---~------

Key records are ignored.

Action with POSITION
---------~----------

For more information see section 8.10.

If no minus sign (-) th en the action is to search forward

until a KEY record with the given'identification is

found.

If there lS a mlnus sign (-) then the action is to search

backward (only on certain tape units and not on sequential

drum files) until the KEY with the specified identification

is found.

KEY records are ignored when positioning ta EOF or EOI.

j

j

,)
\ -----'

-109-

Example:

BOOLEAN B$

B = TRUE$

POSITION (TAPE(lS),KEY (IF B THEN 10 ELSE lS),

KEYNOTFOUND)$

COMMENT WILL SEARCH FORWARD FOR THE KEY RECORD WITH

IDENTIFICATION 10. IF THIS RECORD 1S NOT FOUND, THEN

THE PROGRAM WILL JUMP TO THE STATEMENT WITH THE LABEL

KEYNOTFOUND$

For more information on labels ln a POSITION see section 8.S.

Example:

ARRAY A(O:SOO)$

WRITE (TAPE('E'),EOF('END'),A)$

COMMENT WILL WRITE THE EOF RECORD WITH IDENTIFICATION

'END', AND THEN THE ARRAY A$

8.4.S Modifier EOF

Use

To specify that an EOF (end of file) record with a certain

identification is to be output or searched for.

Form

EOF «parameter» or EOF

-EOF «parameter» or -EOF

The parameter can either be an arithmetic expression or a

string. When the parameter is a string, only the first six

characters are used. If the string is shorter, it is space

filled up to six characters.

The minus sign (-) specifies that the search is to be per

formed ln a backwards direction when use with POSITION. It

has no meaning for WRITE.

Note that EOF means the same as EOF (0)

-EOF means the same as -EOF (0).

-110-

Action with WRITE

An EOF record with its identification glven by the parameter

lS output on the tape or sequential drum file. A minus sign

has nomeaning.

Example:

ARRAY A(0:500)$

WRITE (TAPE('E'),A,EOF('END'))$

COMMENT WILL WRITE OUT THE RECORD CONTAINING THE

VALUES OF A AND THEN THE EOF RECORD WITH

IDENTIFICATION WORD 'END'$

Action with READ
--------~-------

If the READ operation encounters an EOF record, it will

exit via a label in its label list if such a list exists.

See section 8.5.

The modifier EOF must not be placed ln a READ liste

Action with POSITION

If there is no minus sign (-), then the action is to search

forward until an EOF record with the given identification

is fOund.

If there is a minus sign (-), then the action lS to search

backward (only on certain units) until the EOF record with

the specified identification is found.

Note: When positioning backwards, the positioning goes to

the front of the EOF record so that the next READ

action will encounter the EOF record.

Example:

ARRAY A(0:12)$

POSITION (TAPE(4),-EOF)$

RE AD (TAPE(4),EOFLB,A)$

COMMENT WILL JUMP TO THE STATEMENT WITH THE LABEL

EOFBL SINCE AN EOF RECORD WAS READ INSTEAD OF A

RECORD WITH THE VALUES FOR A$

EOF records are ignored when positioning to EOI.

\. -",,/

-111-

8.4.6 Modifier EOI

Use

To specify that an EOI (end of information) record lS ta

be output or searched for.

Form

EOI or -EOI

where the minus sign (-) indicates that search is to be per

formed in a backwards direction, when used with POSITION. It

has no meaniig for WRITE.

Action with WRITE

An EOI record is output.

Example:

COMPLEX ARRAY C(-4:200)$

WRITE (TAPE(5),C,EOI)$

COMMENT WILL WRITE ARRAY C TO TAPE AND THEN PLACE

AN EOI MARKER$

Action with READ

If the READ operation encounters an EOI marker, it will exit

via a specifie label in its label list, if such a list exists.

See section 8.5.

Action with POSITION
-----------~--------

The file is positioned in the indicated direction, past the

first EOI record found.

8.5 Label List

Use

The label list allows the user to specify where he-would like

his program to go to if certain conditions occur during the

input or output operation. If the operationrends normally,

exit is made to the next statement, otherwise it is a run-time

error.
Form

A label list consists of from zero to three labels together or

scattered througout the parameter list to the input/output

-112-

procedure. Their order is important. An input list may have

three labels, an output list only one.

8.5.1 Action with READ when Deviee lS rmplied or CARDS

f Action wlten Action when
Action when an er-

Number includ-
of Eor card another control ror occurs

labels read card read îng input or format
errors

0 Terminate pro gram Terminate program Terminate program

l Jump to this label Jump ta this label Terminate program

2 Jump to first label Jump to second label Terminate program

3 Jump to first label Jump to second label Jump to third label

8.5.2 Action with READ when Device lS TAPE

Number Action when Action when Action when
of Eor record EOr record an error

labels read read occurs

0 Terminate pro gram Terminate pro gram Terminate program

1 Jump to this label Jump to this label Terminate program

2 Jump to first label Jump to second label Terminate program

3 Jump to first label Jump to second label Jump to third label

8.5.3 Action with READ or WRITE when Deviee lS DRUM

Number READ WRITE

of When address When a drum When address When a drum

labels beyond random read error beyond random write error
drumlimits occurs drum limits occurs

0
Terminate Terminate Terminate Terminate
program pro gram program program

l Jump to this Terminate Jurnp.to this Jump to this
label program label label

Jump to

2
second label Terminate Only one label
first label program
ignored

Jump to

3 second label Jump to allowed with WRITE
first label th i Y'(1 Idhel
ignored

\

'-)

-113-

8.5.4 Action with READ or WRITE when Deviee is CORE

The only errors that can occur when using CORE, are format

errors in reading. If no third label is given, the program is

terminated. Otherwise exit is made to the third label ignoring

other labels.

8.5.5 Action with WRITE when Deviee lS implied, PRINTER or CARDS

AlI errors other than editing errors terminate the program.

Editing errors cause a warning message, but the program

continues.

8.5.6 Action with WRITE when Deviee lS TAPE

Number Action on end of tape
Action on

of or end of sequential tape error
labels drum file

0 Terminate pro gram Terminate program
1

l Jump to this label 1
l

Jump to this label

8.5.7 Action with POSITION - only allowed Deviee is TAPE

See table on next page.

Example:

BEGIN

COMMENT STOP READING DATA CARDS WHEN EOr CARD READ$

INTEGER ARRAY A(O:lOOO)$ INTEGER I$

LO: READ (CARDS,A(I),Ll,L2,L3)$

1=1+1$ GO TO LO$

L3: WRITE ('ERROR IN CARD' ,1) $ GO TO LO$

L2: WRITE ('Eor CARD MISSING')$ GO TO STOP$

LI: WRITE ('ALL CARDS READ')$

S"'OP: END$

Action with POSITION

POSITION KEY or arithmetic expression EOF
parameter
Tape .. EOF EOI End of type EOI End of type,
.contents type error type· error
Number of
labels

0
Terminate Terminate Terminate Terminate Terminate
program program pro gram pro gram program

l Jump to Jump to Terminate Jump to Terminate
label label program label pro gram

1

Jump to Jump to Terminate Jump to second Terminate
2 first label second label program ' label, ignore program

1

first label

1 Jump to Jump ta Jump to Jump to second Jump to
1 3 first label _ second label third label label, ignore third label
1

l first label

EOI

End of tape,
tape' error

Terminate program

Terminate program

Terminate program

Jump to third label
ignore first and
second

1

i

.

1
!---I
!---I
+"
1

)

-115-

8.6 Format List

Use

The format list is a means of specifying how values should

be edited.

Form

The format list may have any number of formats. Each format

should come before the input or output list to which it

applies.

Each format may have one of the three following forms.

Name Section

Implied or free format 8.6. l

Declared format 8 . 6 . 2

Inline format 8.6. 3

Restrictions

The devices TAPE and DRUM do not allow format lists. A run

time error is caused if an attempt is made to use a format

with these devices.

8.6.1 Implied or Free Format

a) . Form

No format lS specified before an input/output liste

80 characte~ images are input at a time, usually from

punched cards, and for aIl devices, which allow formatted

input, 80 characters ar'e brought into a "read buffer" -

which is an area in core from which editing can be done.

Values are separated by one or more blanks or end of cardo

Within a string end of card is ignored.

The characters encountered are scanned and converted

into a value according to their forme The type of value

-116-

lS determined by the rules for constants as described

in section 4.1.

Exceptions:

In real constants comma (,) or the letter E may be

substituted for & as the power of ten symbole

Complex constants should appear as two reals. «,> must

not be used).

Example:

Constant

123

TRUE

1.24,-3

1.2483212145

'THIS IS A STRING'

1.245 3.217

Would be edited as
type

INTEGER

BOOLEAN

REAL

REAL2

STRING

COMPLEX

If the type of the value thus edited does not match the

type of the list element to which it is to be assigned,

a transfer function (if available) is invoked. If the

types match, the values is assigned directly to the list

element.

At the end of the image or when an asterisk (*) outside

of string quotes is met, the next image is input.

The action ends when aIl elements in the input list

have had values assigned to them. Any further informa

tion in the read buffer is lost since the next READ

starts with a new image.

\J

-117-

Examp1es:

BEGIN

ARRAY X,Y(1:5,1:2)$

REAL A,B$

COMPLEX C$

INTEGER W$

READ(A,B,C,W,X,Y)$

END$

Data cards:

-7.2 .099 1.0 3.5 362236

1 2 3 4 5 6 K NOTE THAT ARRAYS ARE RE AD BY COLUMN

2.4 3.5

1.862,-1

8.6 9.2 5.562,-4

12.842 18.623 1.5

4.398,-3

1.6 1.7 1.8 1.9

Values after read lS performed

Variable Has the value

A -7.2

B .099

C I.O+iH3.S

W 362236

X(l,l) 1.0

X(2,1) 2.0

X(3,1) 3.0

X(4,1) 4.0

X(S,l) 5.0

X(1,2) 6.0

X(2,2) 2.4

X(3,2) 3.5

X(4,2) 8.6

X(S,2) 9.2

Y(l,l) .0005562

Y(2,1) .004398

Y(3,1) .1862

Exp1anation

Shift to next card since

not aIl list elements filled

A transfer function is

used here

AIl characters after an

H are ignored

Arrays are decomposed by
column

2 • 0

Y(4,1) 12.842 J
Y(S,l) 18.623
~-------+-------_.

continued next page

·-118-

Values after read is performed

Variable

Y(1,2)

Y(2,2)

Y(3,2)

Y(4,2)

Y(5,2)

Example:

BEGIN

Has the value

1.5

1.6

1.7

1.8

1.9

8TRING 8(24)$

INTEGER I,J,K,L,M,N$,

Explanatl.on

The value 2.0 is not

assigned to any variable

but is lost

8 = , l ~ 2 . l 3 • 5 8 4. 6 ' $

,READ (CORE(8)~I,J,K,L,M,N)$

END$

Values after read is p~rformed

Variable Value

l l

J -2

K 4

L 8

M 4

N 6

c) Action with WRITE
--~~-------------
The action of WRITE is to evaluate the expressions in

the order they appear in the otitput list ahd then edit

the values according to the fol16wing rules.

(The format phrases used aredescribed in section 8.6.3).

~

INTEGER

BOOLEAN

REAL

REAL2

COMPLEX

STRING of

length w

--119-

Format phrase used

112

Xl,Bl1

R12.5

R12.5

2R12.5

Sw,Xm - where m is the number

of blanks required to

fill out a multiple of

12 columns.

Example:

INTEGER 1$

REAL2 -D$

BOOLEAN N$

COMPLEX C$

REAL R$

STRING S(26)$

FORMAT FCS6,X6,I12,Xl,Bll,R12.5,R12.5,2R12.5,S26,

XIO,Al)$

STRING CONSTANT(6)$

l = 123$ B = TRUE$ R = 1.321&-2$

D = 1234.6789012$

C = <11.2 J -12.4>$

S = 'IS THE WAY THE RESULTS ARE'$

CONSTANT = 'START'$

WRITE C'START' ,I,B,R,D,C,S)$

WRITE CF,CONSTANT,I,B,R,D,C,S)$

COMMENT WILL PRODUCE SIMILAR PRINTOUTS$

END$

8.6.2 Inline Format

Form

A list of format phrases enclosed between the delimiters

« » may be a parameter in the format liste

Example:

WRITE C«3I3,Al»,I,J,K)$

-120-

8.6.3 ~eclared Format

A specific sequence of phrases is declared and an identi

fier attached which can be used in the format liste

b) Form

Format <identifier>«list of format phrases»,

<identifier>(

Example:

FORMAT Fl(XlO,D7.2,X5,R17.8,Al.l),

F2(A,B6,SlO,I5,X2,N4)$

8.6.4 Format Phrases with WRITE

a) Use

) , $

Format phrases are used with WRITE to specify the output

form of each parameter as weIl as the exact position for

the placement of the value of the parameter.

Qw.d

or Q(E l ,E 2)

where Q represents one of the letters given below,

El must be a positiv arithmetiç expression with the same

meaning as,the positiv integer constant w. The meanlng

and restrictions are given in the table below.

E2 must be a positiv arithmetic expression with the same

meaning as the positiv integer constant d. The meaning

is given i the table below.

The print buffer lS a string of 132 characters for devices

implied, PRINTER and CORE and 80 for CARDS into which the

values, given as parameters are edited according to the

corresponding format ,phrase.

Phrase

Activate

Aw.d
or

A(El-:;.E2)

Boolean

Bw
or

B(El)

Decimal

Dw.d
or

D(El,E2)

l
"-----

\...

FORMAT PHRASES FOR WRITE

Action

Deviee implied or PRINTER

Print 1 line

Devie~ CARDS

Puneh 1 card

Deviee CORE

Transfer as many eharaeters from
the print buffer into the string
as the length of the st ng or
print buffer allows

Deviees implied, PRINTER,CARDS,CORE

Place as many characters as
possible of the strings TRUE or
FALSE depending on the value of
the parameter. Fill the rest of
the field with blanks if neeessary.

Deviees implied, PRINTER,CARDS,CORE

W or El

Meaning Min

Skip w
lines
before
.printing

ignored

ignored

Field
width
(number
of charac
ters used
in the
print
buffer)

o

1

Places the digits of a decimal 1 Field 2
nurnber with d digits after the
deeimal point - leading zeroes
suppressed, minus sign if negative.

d or E2 IPosition
Max JMeaning Min Max in field

Allowed
types of
paramete:-::

63

132
80

for~

CARDS

63

~
'S~ip d

lnes
fter

brinting

~gnored

iignored

NOT
ALLOWED

o

Providel 0
d digi ts
af-ter
decimal
point

31 Non-editing
does not
require a
parameter

Left ~OOLEAN
justified

1
f-J
l'V
f-J
1

31 IRight 1 INTEGER
justified REAL

REAL2
COMPLEX

--
Phrase

Ejeet

Ew
or
E(El)

Free

Fw
or
F(El)

Integer

I:L-oC:
or
I(El,E2)

FORMAT PHRASES FOR WRITE

Action

Deviees imElied, PRINTER

Ejeet to logieal line w-l. If the
present position is past line w-l,
ejeetion is to line w-l on the next
page. (Usually used to start at top
of a page)

Deviees CARDS, CORE

Ignored

1 Deviees implied, PRINTER,CARDS,CORE

Read or write a field of w charae-
ters in free format. See sec. 8.6.1.

1 Deviee im,21ied, PRINTER~C6RDS,CORE

Place The digits of an integer
number with minus sign if negative.
The value is given to the base d.
Where d=O and d=lO have the same
meaning.

w or El

Meaning 1 Min

Logieal l
line
number on
page

Field l
width

Field l
width

Max

72

2047

63

d or E2

MeaningJMin lMax

NOT
ALLOWED

Base 0 10
for
integer
(e.g.
etaI
se 8)

..

1
Position; Allowed
in fieldl types of

paramete

Non-edit-
ing does
not requ-
ire a
parameter

1
!-I
N
N
1

INTEGER
REAL
BOOLEAN
COMPLEX
REAL2
STRING

1

Right INTEGER
justifie REAL

COMPLEX
REAL2
BOOLEAN
(TRUE 1)
(FALSE 0)

FORMAT PHRASES FOR WRITE

Phrase

Absolute
position
to eolumn

Jw
or

J(El)

Middle
string

Mw
or

M(El)

Action

Deviees implied, PRINTER,CARDS,CORE

The next phrase will start from
eolumn w.

Deviees implied, PRINTER,CARDS,CORE

The eharaeters of the parameter are
plaeed into the middle of the field
If the field width w is greater thill
the string length L then the string
is preeeded by (w-L)/2 blanks.
If w is less than L then the right
most L-w eharaeters of the parametew
are 1"""-"1-

...L ~:... •

Left fl ;<.-

]üStified Deviees i~plied, PRINTER,CARDS,CORE

Integer
Nw.d
or

N(El,E2)

Real

Rw.d
or

R(El,E2)

Same as l ?hrase exept that result
is left justified.

Deviees implied, PRINTER,CARDS,CORE

Edits the parameter into the form
±X. XXX· •• X, ±XX

d signifieant digits
Note: w > d+6

w or El

Meaning Min

Column l
number

Field
width

Same as
l phrase

Field
width
(greater
than d+6)

l

l

7

Max

132
80
for
CARDS

132

80
for
CARDS

63

...

63

d or 12 IPosition

M " M" M in field eanlng ln ax

Allowed
types of
parameter

Î

NOT
ALLOWED

NOT
ALLOWED

.::;ar:-le as 1 0
l phrasE

1 Number
of

signi
fieant J digits

l

l

~on-editing

Centre- STRING
j ustified

10lLeft Isame as
justified l phrase

31lRight IINTEGER
justified REAL

REAL2
COMPLEX

1
f-J
1'0
W
1

FOI~MAT PHRASES FOR WRITE

'----_ ..•. _"._-~-_._-----_._----------_._._~
Action w or El -l-·~-d·_~-~~~~ Position Allowed Phrase

M "O 1 0 0 f 0 Id types of
1---- eanlng Mln Max t-'leanlng Min Max ln le parameter

St
0 1 1 1

rlng

Sw
or

S(El)

Real zero
gives
blanks

Uw.d
or

U(El,E2)

Integer .
zero glves
blanks

Vw
or
VeEl)

Deviees implied, PRINTER,CARDS,CORE

The charaeters of the parameter are
placed into the field starting from
the left. If the string length L
exeeeds the field width w then only
the leftrnost w eharaeters are
transferred, if w exeeeds L then
the rest of the field is blank.

1 Deviees implied, PRINTER,CARDS,CORE

If value of the parameter is
lexaetly zero then treat as Xw,

lotherwise treat as Dw.d

IDeviees implied, PRINTER,CARDS,CORE

If value of the parameter is
exaetly zero then
treat as Xw

otherwise treat as Iw

1

1
1

1

Field
width

Field
width

Field
width

Field
width

Field
~"idth

._._-------,--~----- ._ .. --L---.

l

1

l

1

1

.
!
"-

132

80
for

CARDS

63

63

63

NOT
ALLOWED

Ignored

IPro~ide

digits
after
the
deeimal
point

1

IIgnored

Left 1 STRING
j ustifiec

1
1--'
N

-+=
1

0 31 Right INTEGER
j ustified REAL

REAL2
COMPLEX

REAL
1 INTEGER

6 3 ~gnored Right REAL2 -i justified COMPLEX ----- - ---,,~ ,-1-
1

BOOLEAN

L l L ~

r"

(
'---, \ - . ',-

FORMAT PHRASES FOR WRITE

d or E2
Allowed

Phrase Action w or El Position types of . "

Meaning Min Max Meaning Min Max in field par~mete:-,="

Place
blanks Deviees "implied, PRINTER,CARDS,CORE

Xw Place w blanks into the print Number of l 132 NOT Non-editing or buffer blanks 80 ALLOWED X(EI) for
CARDS

String
Deviees implied, PRINTER,CARDS,CORE Constant

String of Place the characters in the nurnber Non-editing characters of colurnns required.
enc10sed Maximum "length 132 for aIl devices
ln

, ,
but CARDS, which may have 80.

1
f---l
l'V
()"l

1

-126-

'd) ~~~!~~~_~~~~_t~§~E~~!!~~~_~~~_~EQ~~n
The following actions occur when any of the restrictions

stated above are broken.

1. The printbuffer'at"the error' poin~ is output

on the appropriate device.

2. The message

EDITING ERROR AT LINE XXXX. CHECK YOUR FORMAT

is output on the PRINTER.

3. The corresponding parameter (if any) is bypassed.

4. Editing continues with the next parameter.

The next field starts in

the last column used by the phrase before the

errar occurred.

Common errors:

1. Parameter is of a type nat allowed by the format

phrase.

2. Field> widthis 0,' tO'asmall to accept value, or

too large.

e) ~~!~~~_~~~~_!~~_~~~_~~_!~~_EE!~!_~~ff~E_i~_E~~~b~2

For devices implied, PRINTER or CORE ,if an editing phrase

will cause editing beyond column 132 then the print buffer

is output and editing begins again in column 1.

For device CARDS the limit is calumn 80.

BEGIN

REAL X,Y,Z$

FORMAT F(D12, 4~R12.4,U12.4,Al)$

X=Y=Z=3.14159&+1$

WRITE (F,X,Y,Z)$

X=Y=Z=O.O$

. WRI1E (f ,X., Y, ~) $

END$

'----'

_,1

-127-

Print 1ines

31.4-159

o
3.14-16,+1

o

BEGIN

INTEGER I,J,K$

FORMAT F(II0,NI0,VI0,Al)$

I=J=K=-31415$

WRITE (F,I,J,K)$

I=J=K=O$

WRITE (F,I,J,K)$

END$

Print lines

BEGIN

-3141531415

00

STRING S(29)$

31415

FORMAT F(S40,Al,M40,Al)$

31.4-159

S='THIS STRING HAS 29 CHARACTERS'$

WRITE (F,S,S)$

END$

Print lines

THIS STRING HAS 29 CHARACTERS

THIS STRING HAS 29 CHARACTERS

8.6.5 Format phrases with READ

a) Use

Format phrases are used to inform the READ statement exact1y

where the characters making up the parameter can be found.

There is also the special format F which allows Free Format

to be used for a specified number of characters in the

read buffer.

-128-

The read buffer is a string of 80 characters in length

into which the contents of the card (for devices implied

or CARDS) or of the string (device CORE) are placed for

editing~

Qw.d

or

Q(El,E2)

where Q represents a formattingcharacter (see below).

El must be an arithmetic expression with the same meaning

as the integer constant w. The meaning and restrictions

are given in section c~

E2 must be an ~rithmetic expression with the same meani~g as

the integer constant d~ The meaning and restrictions are

given below.

c) ~y~~!~è!~_%~E~~!_2~E~~~~~ ____ ~~~~~~g_~~~_E~~!E~~!~~~ê
with READ

The following table gives the possible format phrases

and the restrictions attached to them.

Phrase

Activate

A

Boolean

Bw
or

B(EI)

c
FORMAT PHRASES FOR READ

Action

Deviees implied, CARDS

Transfer the contents of l card
into the read buffer. Place the
start for editing at the first
character of the read buffer.

Deviee CORE

w or El

Meaning Min

Ignored

Transfer the contents of the string 1 Ignored
into the read buffer. If the
string is greater than 80 charac-
ters transfer only the first 80
characters. If the string is less
than 80 characters - say L charac-
ters, then the last 80 - L charac-
ters in the read buffer are
unchanged. Place the start for
editing at the start of the read
buffer.

Deviees implied, CARDS,CORE

If the field contains anywhere ln
it the string TRUE or the character
T or the integer constant l set the
parameter to TRUE.
For the string FALSE, character F
or integer a
set the parameter to
FALSE

Anything else in the field will
cause an error.

Field
width

(number
of

columns
reserved
for the
parameter)

l

d or E2 . IPosition
Max JMeaning Min Max in field

80

Ignored

Ignored

NOT
ALLOWED

Allovled
types 0=
paramet-=:-=

Non-editing

\Non-editing

1
f--J
N
c..o
1

BOOLEAN

FORMAT PHRASES FOR READ

Phrase
r El 1 - d E2 Allowed w or or t f ypes 0

Meaning Min Max' Meaning Min Max paramete~ Action

Decimal

Dw.d
or

D(EI,E2)

Deviees implied, CARDS, CORE

Calculate a number from the digits
in the field. Make it negative
if preceded by a minus signe

The digits may have the forrn of an
INTEGER, REAL or REAL2 constant as
described in section 4.1.

A comma (,) or the letter E rnay be
used instead of & as the power of
ten symbole

Field
width

l 63 If the 1 0
number has
no decirnal
point th en
place a
decirnal
point be-
fore the
digit
which is ë
places to
the left
of the
rightmost
digit in
the field
else ignor12

31 INTEGER
REAL
REAL2
COMPLEX

\--'
w
C>
1

I-.------r---------------+-----+----+-----+----~--_+_--_+__---

Eject

Ew
or

E(El)

Ignored by aIl devices

,-

\
"-~

FORMAT PHRASES FOR READ

Allovleè
w or El 1 d or E2 Position types c~

Phrase Action
Meaning Min Max in field a:::l.e ... ----Meaning Min Max par ,- ~

Free 1 Deviees im21ied 2 CARDS 2 CORE
INTEGER

Fw Read the next w columns in the Number of l 80 NOT REAL
or manner described in section 8.6.1. colurnns ALLOWED BOOLEAN

F(El) to be COMPLEX
(Implied or free format) read in REAL2

this way STRING

Integer 1 Deviees implied, CARDS 2 CORE

~w 1. Calculate a nurnber from the· Field l 63 IGNORED 2:NTEGER
or digits in the field. width REAL

I(El) Make it negative if a minus sign REAL2
precedes. COMPLEX

2 . Give the value a type according
to the form of the nurnber read

1
(see section 4-.1 for form of f--J

nurnbers) . w
f--J

3 . Gonvert the nurnber to integer. 1

4- . Convert the result to the type
of the parameter.

Position Deviees implied 2 CARDS, CORE to 2Jlumn

The next field to be edited starts Column l 80 bOT ron-editing
Jw in column w. nurnber of LLOWED phrase
or (Useful for reread). start of

J(El) next field

FORMAT PHRASES FOR READ

t-' -----.-'"~---, -,-->--',-.~.--,-,-' .. ' ----. r'--"'---'- -- -,- ,---',-,,',-.--> A.LLowec1
r Ph i ' -1-"

1 W or El c} or E2
rase , 1 ACLlon types of

Meaning Hin Më!:~ HeaniI1? l'lin Hax Dararneter~ - 1 -

Hiddle
String

Mw Exactly the sarne as S.
or

S(El)

Integer

Nw Exaetly the sarne as 1.
or

N(El)

Real -- j
f-J

Rw.d Exaetly the same as D.
w
1'-,)

or 1

R(El,E2)

String Deviees im2lied, CARDS, CORE

Sw Transfer as many eharaeters as Field l 2047 NOT STRING
or possible from the read buffer to width ALLOWED

S(El) the string given as parameter.
Start with the leftmost eharaeter (Nurnber of
in the field into the leftmost eolumns
character in the string. If the reserved
field is shorter than the string for the
fill the rest of the string with string)
blanks. If the string i,s shorter
than the field then the rest of the
eharacters in the field are lost.

Note - a string quote is not taken
as a string delimiter, but trans- !

! ferred like any other eharaeter.
1

1

1. ! !

Phrase

No change
if blanks
real

Uw.d
or

UCEl,E2)

No change
if blanks
integer

Vw
or

VeEl)

Blanks
Xw
or

Xe:::l)

String
constant

String of

1

\
'---~

Action

Deviees imElied~ CARDS~ CORE

1. If the field reserved is
completely blank treat as
Xw.

2 . Otherwise treat as Dw.d,

Deviees im12lied2 CARDS 2 CORE

1. If the field reserved is
completely blank treat as
Xw.

2 . Otherwise treat as Iw.

Deviees im121ied2 CARDS 2 CORE

FORMAT PHRASES FOR READ

w or El

Meaning Min

Field l
width

Field l
width

Field l
width

Field l
width

Skip the next field of w colum~s. Field l
width

Completely ignored
charafters
enclosed
by r r

j

Allowed
d or E2 Position types 0=

Max Meaning Min Max in field par~met-=:-=:

63 Ignored INTEGER
REAL
REAL2

63 Same as COMPLEX
for D

63 Ignored INTEGER
REAL
REAL2

63 Ignored COMPLEX

80 NOT ~on-editing
ALLOWED

~on-editing

1
f--J
w
w
1

-134-

d) ~9!~~~_~b~~_E~~!E!9!!~~~_~E~_9E~~~~

The follwing actions occur when any of the restric

tions given above are broken.

1. If an error label is present (the third label of the

label list), a jump is made to that label.

2 • If no error label is present, the read buffer is

printed on the printer and a marker lS printed show-

lng the exact position where the error occured and

the line number of the program being executed.

Common errors:

1. Parameter is of a type not allowed by the format

phrase.

2. Restrictions on w or d have been broken.

3. The characters in the field specified are illegal

or do not have the correct forme (For example spaces

are not allowed in a numeric constant).

8. >.6 Repeat Phrases

Use

Instead of writing out the same format phrase or group

of phrases several times, it is possible' to specify the

number of times the phrase or phrases should be referred

to by using a repeat phrase.

Form

nQw.d

n(Qw.d,Qw.d, Qw.d)

: E: (Qw. d)

: E : (n Qw • d , : E : (Qw • d) , : E : (n Qw • d))

etc.

-135-

where . n is a positive integer constant

Rules

Q lS any format phrase (editing or non-editing)

E must be an arithmetic or boolean expression

w and d have the meanings given in section 8.6.4.

and 8.6.5.

i) The expression E is evaluated when the repeat phrase

is activated. That is when the format phrase lS

required, before the parameter is evaluated.

ii) If E > a the format phrase (S) are repeated that

many times. If E = TRUE the phrases are taken once.

iii) If E ~O or T"' = FALSE the format phrase(s) which L

this repeat controls, will be skipped.

iv If E has an integer value greater than 2047, an

error will occur.

Examples:

BEGIN

COMMENT PRINT AN ARRAY WITH ONE COLUMN PER LINE$

INTEGER N,M$

ARRAY X(I:N,I:M)$

FORMAT F6(:M:(:N:(RI6.8),AI»$

WRITE (F6,X)$

END$

b) !~9~f~D~!§_8§E§~!§

Use

It is possible to repeat certain groups of format phrases

an indefinite number of times depending only on the number

of elements in the input/output list.

Form

The groups of phrases to be repeated are enclosed in

parentheses without a repeat expression preceding. The

-136-

delimiters « » of an inline format and the outermost

brackets of a declared format also denote indefinite

repeat.

i) Indefinite repeat groups should in most cases have

an activate (A) phrase in them since all format

phrases beyond the group are ignored. If they do not,

a warning message is given.

ii) Errors can occur when two cards are read instead of

one because the input list is longer than the number

of phrases in the format.

iii) Attempts ta cause an indefinite repeat of a format

containing only non-editing phrases will cause the

format to be cancelled.

Examples:

BEGIN

COMPLEX ARRAY COMPARRAY (1:50,1:50)$

INTEGER SIZE,I$

FORMAT FREAD(A,I12,(A,10R8.2»

FWRITE('COMPARRAY OF S1ZE' ,112

Al.2,(10(R9.2,X2),Al»$

READ (CARDS,FREAD,SIZE,FOR I=(l,l,SIZE)

DO FOR J=(l,l,S1ZE) DO COMPARRAY A(I,J»$

COMMENT WILL READ IN THE PART OF THE ARRAY REQUIRED$

WRITE (PRINTER,FWRITE,FOR I=(l,l,SIZE)

DO FOR J=(l,l,SIZE) DO COMPARRAY(I,J»$

COMMENT WILL PRINT OUT HEADING AND THEN THE PART

OF THE ARRAY REQUIRED$

END$

_./

BEGIN

INTEGER I$

COMPLEX C$

-137-

FORMAT FREAD(A,I12,R12.6)$

READ (CARDS,FREAD,I,C)$

COMMENT WILL READ TWO CARDS SINCE COMPLEX VALUES

REQUIRE TWO PHRASES$

END$

8~7 lnput/Output List

Use

The input list is an ordered set of variables into which

values can be transferred. The output list is an ordered

set of expressions which can be evaluated and their values

transferred to the required output device.

Form

The list may have two forms

Declared list

Inline list

8.7.1 Inline List

Use

Ta give the input or output statement a list of expressions

to or from which values may be transferred.

Form

Any ordered group of expressions which are parameters to an

input or output procedure is an inline liste

Examples:

FORMAT F(A,3R12.2)$

REAL X,Y,Z,A,B,C$

WRITE (X,Y,Z)$

READ (CARDS,F,EOFLB,A,B,C)$

EOfLB: COMMENT THE EXPRESSIONS X,Y,Z,A,B,C, IF A GTR B THEN

A-B ELSE B-A, ARE ALL MEMBERS OF INLINE LISTS$

-138-

8.7.2 Declared List

Use

When several input or output calls requlre the same

expressions in the same order a declared list may be

used.

Form

LIST <identifier>«list elements»$

It must obey the rules for declarations.

Several lists may use one declaration.

Examples:

LIST Ll(FOR 1=(1,1,5) DO A(I),X,Y),

L2(IF B THEN X ELSE Y,Z)$

8.7.3 Rules for Lists

a) ~EE~l§

i) An array identifier may be used without subscripts in

a liste

The meaning of this is that every element in the array

is to be used in the liste

ii) For multi-dimensional arrays, the left most subsoript

varies most frequently.

Example:

ARRAY X(1:2,1:3,1:4)$

WRITE (CARDS,X)$

COMMENT WILL PUNCH OUT THE ELEMENTS IN THE FOLLOWING

ORDER

X(l,l,l), X(2,1,1), X(1,2,1), X(2,2,1),

X(1,3,1), X(2,3,1), X(1,1,2), X(2,1,2),

X(1,2,2), X (2 ,2 ,2-) , X(1,3,2), X(2,3,2),

X(1,1,3), X(2,1,3), X(1,2,3) , X(2,2,3),

X(1,3,3), X(2,3,3), X(1,1,4) , X(2,1,4),

X(1,2,4), X(2,2,4), X(1,3,4), X(2,3,4)

-139-

The expression is eva1uated at the time the list element

is referenced.

c) [~E~è!_~~_1!ê!ê

A format identifier or inline format may be p1aced ln a

declared liste

d) List with MAX and MIN
--------~----~----~--

The parameters to MAX and MIN may be given in a declared

liste

8.7.4 Sublists

Use

Lists or list elements may be grouped so that they can be

repeated in a specific order.

Form

Sublists are formed by enclosing the li st elements with

brackets.

Example:

LIST Ll(FOR 1=(1,1,2) DO (A(I),B(I»))$

Note:

List elements are expressions and therefore cannot be enclosed

within BEGIN 'END. Sublists must be used whenever such a con

struction is required.

8.8 Input/Outp~t Statements

8.8.1 The READ Stat'e'ment

Use

To specify that values are to be input according to the

given parameters.

-140-

Form

READ«device>,<format. list>,<input list>,<label .1ist»$

Devices allowed ---------------
The allowed devices are implied, CARDS, CORE, TAPE, DRUM.

Labels

Up to 3 labels may be used. See Sec. 8.5.

8.8.2 The WRITE Statement

Use

To specify that values are to be output according to the given

parameters.

Form

WRITE «device>,<format list>,<modifier list>,<output list>,

<label list»$

Deviees allowed ---------------
The allowed devices are implied, PRINTER, CARDS, CORE, TAPE,

DRUM.

Example:

WRITE(TAPEC'A'),ERRLB,EOF('XYZ'),X,Y,-Z)$

WRITE(CORE(S),«3R12.2,A»,X,Y,Z)$

Labels

Only l label lS allowed. See sec. 8.5.

8.8.3 The POSITION Statement

Use

To position a speeified magnetic tape unit or sequential

drum file to a position specified by a modifier.

Form

POSITION(TAPE«parameter»,<modifier list>,<integer expression>,

<label list»$

\

\)

-141-

Devices allowed ---------------
Only TAPE is allowed as a device.

Labels

Up to 3 labels may be used. See sec. 8.4, 8.5.

The integer expression specifies the number of records to be

positioned. If it is positive, the positioning lS done ln

the forward direction, if negative in a backwards direction.

If the device is a sequential drum file, only positioning

forward is allowed.

8.8.4 The REWIND and REWINT Statements

Use

REWIND positions a magnetic tape or sequential drum file to

its starting position.

REWINT rewinds a magnetic tape and locks it so that it can

no longer be used, ,or rewinds a sequential drum file ta its

start position.

Form

REWIND(TAPE«parameter»)$

REWINT(TAPE«parameter»)$

Device allowed

Only device TAPE is allowed with these operations.

Any other devices will cause undetectable errors.

8.8.5 The MARGIN Statement

Use

To change the margin settings on the printer. Depending on

the size of paper used at an installation, there will be a

certain number of lines per print page.

Procedure MARGIN allows the user to specify which is to be

the first line and which is to be the last line on page.

-142-

It can also be used when special print forms such as labels

or envelopes are being printed.

Form

MARGIN «length>,<top line number>,

<bottom line number>,

<string if desired»$

Where

<length> is an integer expression specifying the

number of lines thé installation allows per page.

<top line number> is an integer expression specifying

the logical line number where the first line is to

be printed.

<bottom line number> is an integer expression speci·

fying the logical number where the last line is

to be printed.

<string> is a string which is typed on the console

when margins are actually changed on the printer.

Example:

BEGIN

BOOLEAN B$

MARGIN (IF B THEN 72 ELSE 66,5,

IF B THEN 69 ELSE 63)$

END$

/

-111- 3-

9 OTHER INFORMATION

9.1 Comments.

Use

The use of explanatory messages is encouraged to aid read

ability of the program and to help in finding errors in the

source texte

Methods. -------
a) After EEGIN or any $ or

be placed.

the following construction may

COMMENT any characters not including

by ; or $

b) After END comments can be placed.

or $ followed

However, the characters or $ or the words END or ELSE

cause the ending of the comment.

c) In a procedure declaration comments may be placed in the

formaI parameter list by substituting for the comma the

construction:

)<letter string>: (

(See section 7).

Example:

COMMENT THIS PROGRAM SHOWS COMMENTS$

EEGIN COMMENT CAN COME AFTER PEGIN$

INTEGER 1$

COMMENT CAN COME AFTER DECLARATION$

PROCEDURE SHOW (K)WORDS CAN JI: PLACED HERE: (L)$

REAL K,L$

K=L$ COMMENT CAN COME AFTER A STATEMENT$

IF l GTR 50 THEN

BEGIN

SHOW (1,50-1)$

END YOU CAN ALSO PUT COMMENTS HERE

-144-

ELSE

SHO\A; (1,50-1)$

END OF THIS PROGRAM SHOWING COMMENTS$

Note:

A comment may come before the first lliGIN of a program.

9.2 Options

It is possible to control certain actions of the ALGOL compiler

and run-time system by placing a speçific option letters after

the masterspace on the ALGOL processor card or the XQT cardo

(See EXEC II manual page 3-1).

At compiletime these same options may also be turned on by using

a "statement" of the form

OPTION 'string of option letters'$

'They may be turned off by using

OPTION 'string of option letters' OFF$

These "statements" are accepted wherever declarations or state

ments are allowed.

Note:

OPTION may come before the first ffiGIN.

~y~~!~e!~_~E!~~~~_~!}_!!!~_~I:§:~~E9·

A Accept thé compiled pr~gram even if errors are found.

No warning messages are given.

E AlI external procedures when they are compiled requ~re

this option.

F The compiled SLEUTH II code is listed and punched into

cards, which are accepted by the SLEUTH II assembler.

G' The listing for this compilation will start at the top

of a new page.

\)

L

-145-

The SLEUTH II code produced by the compiler will be listed.

The instructions resulting from each line of ALGOL text

will appear just before the line is printed.

N The source text listing is suppressed. No warnings are

given, but error messages are printed together with the

source lines to which they apply.

o This option has the same effect as R.

R This option removes the instructions which check wheter

the subscript being used is within the bounds declared

for the array.

It is suggested that this option should no~ be used during

debugging. Production programs can benefit greatly from

the saving in time when the check is removed.

S Punch the updated symbolic text in compressed forme

T At the end of the listing, times are given for the four

passes of the compiler and the total time taken for the

compilation. The number of words used on drum for the

intermediate output from the passes of the compiler is

also printed.

V Suppress warning messages.

W Correction cards used to update a symbolic version are

listed before the normal source text listing.

X If errors are detected in the compilation, the entire

run is aborted.

Z No run-time diagnostic information is prepared. When this

option is used, a PMD card may not be used. The program

will notkeep track of the line numbers being executed so

that run-time error message will not be complete. The use

of this option saves time and core-space in production

programs, but should not be used when debugging.

-146-

~Y~!!~~!~_~E!!~~~_~~_!~~_~Ç±_9~E9

(See also EXEC II manual sec. 5.8).

A Accept the program for execution even though errors have

been found during compilation or allocation. If compile

time errors have occured, execution will proceed up to the

point of the first error and then the program is terminated

with the message:

SOURCE LANGUAGE ERROR AT LINE XXX

F This option must be used when using external FORTRAN, pro

cedures containing double precision or complex arithmetic.

Otherwise the program will terminate with the message'

ILLEGAL OPERATION AT LINE XXX

where the line number refers to the last ALGOLline

executed.

N Suppress listing of allocation tables.

X Abort the rest of the run if errors occur.

9.3 Chained Programs and NU ALGOL

1. The EXEC II manual Section VI.2. describes how large

pr~grams may be broken into sections or links.

NU ALGOL programs may also take advantage of this feature

through the use of the statement

CHAIN «integer expression>)$

where the value of the <integer expression> is the number of

the next link to be executed.

2. Sequential drum files may be used across links because Y$TTA~

their control table, is kept in blank common.

3. Deviee DRUM may be used across links. The current drum posi

tion, obtained by the procedure DRUMPOS, is not destroyed.

~)

-147-

4. No data from the ALGOL programs is saved across links because

no data is kept in blank common.

5. Users of external FORTRAN or SLEUTH programs which have blank:

common, must ensure that their data areas do not interfere

with Y$TTAB.

-148-

10 ERROR MESSAGES

ê§s~~i!y

The compiler tries to catch and properly diagnose aIl errors

in the text given to it. Sometimes the syntax is so incorrect

that it confuses the compiler to the point where spurious messages

are printed or certain internaI errors may occur. When such internaI

errors occur it is suggested that aIl other errors diagnosed be

corrected. In most cases, the internaI error will then disappear.

~~~g~~§~~9ê: 

Where possible the exact syntax causlng the error is marked with 

an asterisk. The following list suggests the possible problem 

and if possible gives a reference to where the required rules 

are explained. The user's help in suggesting other possible 

problems detec~ed and diagnosed under specific error messages 

will be appreciated. 

Level of errors. 

There are three levels of errors. 

a) Warnings - are given when a construction may cause an error 

if not used correctly, or the construétion'is inefficient 

They are not counted in the total given in the line 

XX ERROR(S) WERE FOUND 

They can be suppressed by using the V option or as a .side

effect of the A or N options. 

b) Errors - These are the usual diagnostics given when the 

compiler cannot translate the given source code into meaning

fuI object code. 

The program produced by the compilation may be loaded and 

executed by using an A option on the XQT card but when a 

statement containing an error lS executed, a jump will be 

made to a run-time error routine which terminates the program. 

c) Compilation killers - For certain internaI compiler errors or 

table overflows and such unresolvable problems as IMPROPER 

BLOCK STRUCTURE; compilàtion is immediately stopped. Not aIl 

errors are detected. In these cases an XQT card even with an A 

option will do nothing because no program has been produced. 



-149-

10.1. Compile-Time Errer Messages 

Error 
number 

1. 

Message 

Illegal number 

Possible problern 

The numher does not conform to 

the syntax of sec. 

2. Illegal character Sorne special characters cannot be 
US8Q ùutsiùe strings or CO[ll11~ents. 
(See s2ction 2.1) .. 

3. Correction card error Line nurnber on correction cards are 

4. 

5 • 

6 • 

7 . 

8 • 

Improper use of 

reserved identifier 

Too long string 

Missing delimiter 

~ong delimi ter 

Improper operand, or 

operand is missing 

not in ascending order.(See EXEC II· 

5-l0A) 

Reserved identifiers (see section 

2.2.) may only be used with their 

special rneaning. 

String constants may not have more 

than 132 characters. 

A string quote may be missing or an 

extra one has been punched. 

Missing operator such as + or - or 

missing $ on previous statement. 

The compiler lS expecting sorne other 

delimiter. Also VALUE must come 

before aIl specifications. 

Usually two operators have been 

placed together. 

For example Ax-B lS not allowed. 

Ax(-B) must be used. 

9. Missing operand Improper construction of an IF 

staternent. (See section 5.4). 

10. Illegal construction Often caused by a mismatched number 

of left and right parentheses or 

any other non-standard construction. 

Il. . Missing specification No specification given for a para

of <name of variable> meter to a procedure. (See section 

6 .1 ) 

12. Pass 1 stack overflow An internaI compiler error usually 

caused by other errors or a too 

large program. 



Error 
number 

15. 

16. 

17. 

18. 

-150-

Message Possible problem 

Double pecification A parameter to a procedure has been 

of <name of variable> specified twice. (See section 7.1) 

Illegal value 

specification of 

< name of variable > 

Missing formaI 

parameter 

~Warning* ~mproper 

LABEL , LIST , FORMAT , SWITCH 

and PROCEDURE cannot be given a 

value specification. 

A specification has been given for a 

variable which is not a parameter to 

the procedure. Often it should be a 

declaration of a local variable and 

come inside the BEGIN of the proce

dure. 

AlI BEGINis have been matched with 

termin"ation - reinain- END' s but still some cards remain. 

ing cards ignored 

19. xWarningx Missin~ end The block structure may not be quite 

- extra end interested correct or the final E~D has 

20. 

21. 

Too many nested 

BEGIN-END pairs 

Improper block 

structure 

been forgotten. 

Only 34 nested BEGIN-END pairs or 

9 block levels are permitted. 

Sorne EEGIN' s or END' s mis s ing , 

possibly caused by other errors. 

22. Too many errors- Have you read the programmer's 

compilation sup- guide? 

pressed 

23. Double declaration of Two identifiers in which the first 

<name of variable> at 

line <line of second 

declaration> 

twelve or less characters are the 

same, have been declared in the 

same block. 

24. Missing declaration of An identifier has been misspelled or 

25. 

<name of variable> the user has forgotten to declare 

it. 

Redeclaration stack 

o verflow 

There are too many identifiers with 

similar spellings in nested blocks. 



Error 
number 

26. 

27. 

29. 

30. 

-151-

Message 

Interphase l rror 

InternaI error 

Accumulator stack 

overflow (simplify 

this expression) 

Mixed types in left 

part liste 

Possible pro:hlem 

An internaI compiler error. 

Check for other serious error~. 

The user has totally confused the 

compiler. Correct aIl other errors 

and try again. 

There are too many intermediate 

results in an arithmetic expression 

for the computer to handle. 

In multiple assignments aIl 

variables must have the same type. 

31. Illegal ( after <narre Possibly a delimiter is missing or 

of variable> at line a simple variable is being used 

<line of declaration> with a subscript. 

32. 

33. 

34. 

35. 

Wrong number of sub

scripts to array 

Improper type in 

expression 

Wrong parameter 

kind ,to procedure 

<procedure name> 

at line <line of 

declaration> 

Wrong parameter' 

type to procedure 

'<procedure name> at 

line <line of 

declaration> 

The number of subscripts used must 

always match the number of dimen

sions given for an array in the 

declaration. 

Only certain transfer functions 

exist between different variable 

types. This expression requires 

one which does not existe (See 

section 7.. 4. ) . 

FormaI and actual parameter kinds 

must match. For example the actual 

parameter may not be an array iden

tifier when the formaI one is a 

simple variable. (Line 0 refers ta 

a standard procedure.) 

The type of an actual parameter must 

match that of its formaI parameter 

unless a transfer function exists. 

Note that no transfer functions are 

allowed for arrays. (Line 0 refers 

to a standard procedure.) 



Error 
number 

36. 

37. 

-152-

Message 

Illegal assignment 

Constant table over

flow 

Possible problem 

A transfer function which does not 

exist has been called for. 

The program contains a constant 

expression which is too compli

cated, or the total number of con

stants in the program is too large 

38. Wrong number of para- The npmber of parameters is a pro-

39. 

40. 

41. 

42. 

43. 

44. 

45. 

4,6. 
; 

meters to procedure cedure calI does not match the 

<procedure name> at line declaration. (Line 0 refers to 

<line of declaration> a standard procedure.) 

Improper type in bound 

pair list of array 

< arr'ay, name> 

xWarningx Do you want 

to compare constants? 

Improper type before 

THEN 

Improper relation be

tween complex or 

string expressions 

Undefined transfer 

funct,ion 

Operand stack over

flow 

Improper type of con

trolled variable <name 

of variable> at line 

<line of declaration> 

xWarningx Zero step 

Only INTEGER, REAL and REAL2 are 

allowed types for substrict bounds 

in array declarations. 

Possible punclng error 

Only boolean expressions are 

allowed before the delimiter THEN. 

Strings and complex numbers can 

only be compared for equality or 

non-equality. 

An implicit non-existent conver

sion has' been called for. (See 

section 7.4.). 

InternaI compiler error. Check 

carefully for other errors. The 

program is too complicated. 

The controlled variable in a FOR 

loop may only be of type INTEGER 

or REAL. 

The controlled variable will Dot 
be changed in a FOR statement when 
the step is zero. 



Error 
number 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

-153-

Message 

Improper type ln FOR 

list element 

Wrong type of sub-' 
script for array 
<array name> 

Operator stack over

flow 

FOR stack overflow 

,;WarningM: Feference
into FOR-statement by 
label <label name> at 
line <line of 
declaration> 

xWarningx Test for 

equality between non

integers may be 

meaningless 

Too many different 

identifiers 

Pass2 stack overflow 

Unrecoverable error 

in ALGOL drum file 

Overflow in ALGOL 

drum files-program 

too large 

Iroproper format 

construction 

Zero replicator 

Possible problem 

Only INTEGER and REAL types are 

allowed in a FOR liste 

-Only INTEGER, REAL and REAL2 are 

Iegal types for subscripts. 

InternaI compiler error. Check care

fully for other errors. The program 

is too large and complicated. 

Only 24 nested FOR statements are 

allowed or a FOR-list may contain 

about 40 elements. 

Jumps to labels in FOR-statements 

are hazardous since the loop 

control may not be initialized 

correctly. 

Variables of types REAL, REAL2 and 

COMPLEX are only approximations to 

a value and hence may not be 

exactly equal. 

Approximately 600 different identi

fiers may be used. 

InternaI compiler error. Check for 
other errors which may have caused 
the compiler confusion. The program 
may have too many declarations. 

InternaI compiler error. Check for 

other errors which may have con

fused the compiler-- or for a 

machine failure. 

The intermediate outputs 

from the compiler are larger that 

the scratch area on drum. 

Sorne rule for formats has been 

broken (See section 8.6 ). 

Although replicator expressions may 

have the value zero, the constant 

replicator zero has no meaning. 



Error 
number 

Message 

-154-

Possible problem 

59. Missing right or The number of right and left paren

extra left parenthesis theses used in a format do not match 

60. Missing left or extra The number of right and left paren-

61. 

62. 

63. 

right parenthesis 

Improper field 

specification 

~Warning~ Missing 

activate within ln

definite repeat 

xWarning* Specified 

field is longer than 

One line 

theses used in a format do not match 

The field width part of a format 

phrase (w) is not formed properly. 

(See section 8.6 ). , 

Indefinite repeat formats usually 

require an A-phrase to perform 

properly. 

The field width part of a format 

phrase (w) has little meaning if 

it exceeds 132 columns. 

64. Format stack overflow Only 10 sets of nested brackets are 

65. 

66. 

67. 

68. 

69. 

70. 

~Warning~ Timeconsu
~ing conversion to 
integer subscript in 
array <array name> 

Illegal format 

character 

This feature is not 

implemented 

allowed ln a format. 

It is allowable to use non-integer 

expressions for subscripts, but it 

is very slow. 

Only certain characters are meaning

fuI within a format. (See section 

8.6.). 

The construction cannot yet be 

compiled. 

Unrecoverable error in Trouble with reading symbolic ver

source input files 

Interphase 2 error 

Pass 1 stack linder

flow 

sion of program from the card 
'reader, tape or PCF area on drum. 
Usually a hardware error. 

InternaI compiler error - check for 

other possible errors. 

InternaI compiler error - check for 

other possible errors. 

71. Operandstack underflow InternaI compiler error - check for 

other possible errors. 



Error 
number 

Message 

-155--

possible p~oblems 

72. Improper use of formal A formal parameter not specified as 

parameter <parameter a procedure is being used like a 

name> at line <line procedure. 

of specification> Example: 

PROCEDURE P(X); 

REAL X; 

BEGIN X; END; 

73. Conversion to integer REAL and REAL2 constants· 

74. 

causes overflow 

Improper parameter 

to string <string 

name> 

may have a largest absolute value of 

b 
38 . a out la but lnteger constants 

have a largest absolute value of 
11 only about la . 

The parameters to a string may only 

be INTEGER, REAL or REAL2 expres

sions. 

75. Too man y parameters to Strings require either no parameters 

string <string name> or only a starting character posi-' 

tion and the length. (See section 

76. Operator stack under

flow 

4 . 4 ). 

Internal compiler error - check for 

other possible errors which could 

have confused the compiler. 

77. xWarningx Inconsistent A formal array has been used with 

use of dimensions to 

array <array name> 

different numbers of subscripts. 

7S'. Parameter out of range Certain standard procedures require 

in procedure proce- parameters to have 'value in a cer

dure <procedure name> tain range. 

79. 

sa. 

Missing BEGIN 

xWarningx Operand for 

Il is not integer 

All programs except externally com

piled procedures must start with 

BEGIN. It is not allowed to place 

a label before the first BEGIN. 

Integer divide (II) is only allowed 

for integers. Conversion will be 

attempted. This warning is given to 

the rules for ALGOL 60. 



Error 
number 

81. 

82. 

83. 

84. 

85. 

86. 

-156....; 

Message 

Division by zero 

Too many string 

constants 

Too many labels 

Too many external 

references 

Too man y proce

dure parameters 

Prototype table 

overflow 

Possible problem 

Division ty zero has been attempted 

in a constant expression being ava

luated by the compiler. 

There may be at most 200 string con

stants in a program except for the 

ones used in formats. 

A program may contain 200 label 

declarations. 

A program may reference 50 external 

procedures including standard proce

dures and system subroutines. 

A procedure may have up to 63 para
meters. For LIBRARY procedures the 
number is determined as shown in se~. 
7.3.5.2. 
The program contains to many and too 

large blocks or procedures. 

87. Too many external Only 10 external procedures may be 

procedures compiled within the same element. 

88. Too many array and The pro gram has too many arrays or 

string declarations string with different bounds. 



-157-

10.2 Run-Time Error Messages 

Because the evaluation of many expressions is left to the run

time routines, certain errors can occur. These are caught by the 

run-time system and the ~ppropriate messages given, together with 

the line number of the element where the error occured. 

Number 

o . 

1. 

2 . 

3. 

4. 

5. 

6 • 

7 • 

Message 

InternaI error 

Improper type con-

verslon 

This feature lS not 

implemented 

Incorrect number of 

parameters 

An attempt has been 

made to store into a 

constant 

An attempt has been 

Possible probiem 

Trouble in an ALGOL run-time routine 

Consult your systems support people. 

A transfer function which is not 

allowed has been requested. 

The run-time routines of the com

piler cannot process this con

struction. 

The number of parameters in the 

procedure calI does not match the 

number given in the procedure 

declaration. 

A formaI parameter appearing to the 

left of an assignment has a constant 

as its actual parameter. There may 

be a missing value specification or 

the parameters in the procedure calI 

may not be in the correct order. 

A formaI parameter appearing to the 

made to store into an left of an assignment has an 

expression expression as its actual patameter. 

Number too large 

Attempted division 

by zero 

Perhaps the parameters in the pro

cedure calI are not in the same 

order as those in the procedure de

claration, or a value specification 

is missing. 

A REAL, REAL2 or the real or imagi

-nary parts of a COMPLEX number hav

ing absolute value larger than about 
38 10 has been produced. 

The divisor in an integer or real 

division is zero. 



-158-

Number Message 

8. Store error 

9 . Illegal operation 

Possible problem 

Incorrect code generated by compiler 
due to errors in the source code, 
program destroyed by FORTRAN or ma
chine language procedures, or sub-· 
script out of range when using R~ 
option. 

Missing external procedure or ln

correct return frCffi a FORTRAN or 

machine language procedure. 

10. Result undefined for The result produced by a transfer 

Il. 

12. 

13. 

14. 

conversion 

MERR$ termination 

Memory capacity 

exceeded 

Improper type of 

parame ter 

Improper kind of 

parame ter 

function is not a meaningful value. 

Execution of the run has been ter

minated by the system error exit 

routine. (Often maximum time or 

pages.) 

Usually caused by array bounds which 

are too big, or by the dynamic 

creation of too many or too large 

procedures. 

The type of an actual parameter must 

match that of its formaI parameter 

unless a transfer function exists. 

Note - no transfer functions are 

allowed for arrays. 

FormaI and actual parameter kinds 

must match. For example the actual 

parameter may not be an array iden

tifier when the formaI one is a 

simple variable. 

15. Argument out of range A parameter to a standard procedure 

16. 

17. 

. Subscript out of 

range 

Too many dimensions 

lS not within the limits accepted 

by that procedure . 

The subscript computed for an array 

element does not fa11 within the 

bounds specified in the array 

dec1aration. 

On1y 10 dimensions are a110wed in 

an array. 



Number Message 

18. Read error 

-159-

Possible Cause 

Problem with using the READ statement, 

usually because of an undefined trans

fer function or a constant not in the 

correct format. 

19. Improper array bound The evaluation of the expressions ln 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

in declaration an array bound has prodused a lower 

bound that is greater than the upper 

bound. 

Blocklevel is too 

high - no more X 

registers 

A control card was 

read by the read 

statement 

Improper parameter 

Attempt to read/ 

Only 9 nested block levels are 

allowed. 

If not done for a reason, this mes

sage usually implies that the amount 

of input data is known ln correctly. 

Sometimes when reading cards, i t ,is 

caused by reading two or more cards 

instead of one because of an incor

rect FORMAT or LIST, or because free 

format RE AD always starts on a new 

cardo 

Improper parameter in size or signe 

The parameter to device DRUM is 

write beyond random too large or is negative. 

drum' limits 

Input/output error 

Source language 

error 

Improper type of 

Error with device DRUM or TAPE. Often 

caused when the length of an input 

list is not the same as that of the 

corresponding output liste 

Executions done wi th A-option can 

only procede as far as the first 

error. 

The controlled variable of a FOR 

controlled variable statement is a formal parameter and 



Number 

2'7 • 

28. 

29,. 

30. 

31. 

32. 

33. 

34. 

36. 

Message 

Write error 

Zero or negative 

string length ~n 

declaration 

Checksum error 

Tape error 

Tao many labels 

Position error 

List longer than 

record 

Formats are not 

allowed with TAPE 

or DRUM 

Only ten nested 

-160-

Possible Cause 

the corresponding actual parameter 

is not of the same type. 

Improper parameters given to the 

WRITE statement. 

The expression given as the length 

of the string has a value less than 

1. 

The checksum on a tape record is not 

correct. Possible tape error or in

compatible tape format. 

Beyond end of information if sequen

tial drum file, or actual tape error 

and no error label avaiable. 

WRITE may only have l label. READ 

and POSITION may have 3 labels. 

Improper parameters given to the 

POSITION statement or trouble in 

positioning a file. 

The input list given to READ with 

device TAPE is longer than the 

record on tape. 

Deviees TAPE and DRUM may not read 

or write formatted data. 

In a format there can only be 10 

sets of parentheses nested sets of parentheses. 

allowed. 



Number 

37. 

38. 

39. 

Message 

Neither labels 

nor lists allowed 

~n lists. 

Input or format 

error ~n READ 

Editing error in 

WRITE. Check your 

format 

-161-

Possible Cause 

The list elements for a declared 

list can only be expressions, array 

identifiers or formats. 

The form of an item being read and 

the format used are not compatible. 

The input image is printed with an 

asterisk showing where the error 

occurred. 

The value to be edited is too large 

for, or in sorne other way incompati

ble with the format. The output buf

fer is printed showing how far ~he 

editing has progressed. The editing 

will continue with the next value. 





APPENDIX A. 

BASIC SYMBOLS 

Out of the 64-character set of the UNIVAC 1107/1108 computers, 

55 characters are recognized by the NU ALGOL compiler as being 

meaningsful within an ALGOL program. (See sec. 2.1). The re

maining 9 characters have no interent meaning and are allowed 

only within strings. They may thus be installation defined. 

To the compiler the meaning of a character is determined by the 

value of its internaI representation ("field data" value). The 

table below lists the characters by their internaI representa

tion together with a common graphic representation. The corre

sponding punched-card codes are not shown because they may be 

installation defined. For the installation defined characters 

no graphic is shown. 

Table I. NU ALGOL characters 

InternaI Graphic InternaI Graphic InternaI Graphic 
value symbol value symbol value symbol 

(octal) (octal) (octal) 

00 25 P 52 
Dl [ 26 Q 53 : 
02 :J 27 R 54 
03 30 S 55 
04 31 T 56 , 
05 . SPACE 32 .U 57 
06 A 33 V 60 0 
07 B 34 W 61 1 
10 C 35 -X 62 2 
Il D 36 Y 63 3 
12 E 37 Z 64 4 
13 F 40 ) 65 5 
14 G 41 - 66 6 
15 H 42 + 67 7 
16 l 43 < 70 8 
17 J 44 = 71 9 
20 K 45 > 72 f 

21 L 46 & 73 ; 
22 M 47 $ 74 / 
23 N 50· * 75 . 
24 0 51 ( 76 

77 

The basic symbols of the NU ALGOL hardware language are repre

sented by means of the above characters. The following table 

shows these symbols along with ,the corresponding symbols of 

the ALGOL 60 reference language. 



-2-

Table II. NU ALGOL Basic Symbols 

-----

ALGOL 60 NU ALGOL ALGOL 60 NU ALGOL 

true TRUE ; ; or $ --
false FALSE . - = or . -

+ + step STEP 
- - until UNTIL 
x :* while WHILE 
1 1 comment COMMENT . Il ( ( 

t ~* ) ) 

< LSS [ ( or C 

< LEQ ) 
- ) or J 

= EQL , , 
GEQ 

, , > -
> GTR begin BEGIN 

t NEQ end END --
- EQIV own --
:J IMPL boolean BOOLEAN 
V OR integer INTEGER 

XOR real REAL --
1\ AND REAL2 
-, NOT COMPLEX 

~ to GO TO STRING 
or GOTO or GO array ARRAY 

if IF switch SWITCH -
then THEN FORMAT --
else EL SE LIST --
for FOR LOCAL --

do DO EXTERNAL -
OPTION ALGOL 

OFF FORTRAN 
, , LIBRARY 
. . SLEUTH 

10 & or && Erocedure PROCEDURE 
: : or . . label LABEL 

value VALUE 



~J 

APPENDIX B. 

EXAMPLES OF PROGRAMS 

This appendix contains sorne si rnple examples illustrating the use of NU ALGOL 
J::ach has been run on the 1108 and sorne sarnple input and results are shown. 

Bf:.GU'J 
COMMENT EXAMPLr 1 

CALCULATION OF VALUE OF ARITHMETIC ~XPRfSSr(N 
wITit READ 11\1 VAPIAbLES 5" 

RlAL A,B,e $ 

INTlGER TGILL $ 

~< E A D (C A R D S , A , B , C) $ 

TOILL = A+B**C/A ~ 
~RITE (PRINTER,A,R,C,TOILL) $ 

DATA 

5 u.2 1.222 

RESULTS: 

5.0000,+UO 6.2000,+00 1.2220,+00 7 

UEGIN 
COMMENT EXA~PLF 2 

CALCULATION OF SQUARfROQT, B, OF A REAL NUMPER, 
A, ~\. 1 TH 6 DIG 1 TS ACCIJRAC y RY NE~vTOÎ'.I-r( APHSOt'-J 1 TrRA TI ON $ 

REAL A,B,OLUH $ 
READ (CARUS,A) $ 

OLOS = 1.0 $ 

FOR B = O.5*(A/OLDB+OLDB) ~tiILE ARs(n-OLn Q ) GTR I n **{-h)*R DO 
OLOb = R $ 

~RITE (PRINTER,A,B) $ 

END PHùGRArw1 li 

DATA 

5.77777 

RESULTS: 

5.7778,+00 2.4037,+00 



BEGIN 
COMMENT 

-2-

EXAMPLE :3 

RE.AL 
INlEGEH 

HEAD 
COMMEt~T 

VALUE OF A POLYNOMIAL Y=S(O)+j3(l)*X ••••••• +B(~J)*X**"J $ 
X.Y $ 

BEGIN 

K.N $ 
(CARDS,N) $ 

DEGkEE OF POLYNOMIAL REAC FROM CARDS. INNER BLOCK PERFORMS 
READING OF COEFFICIENTS AND CALCULATIONS ANn PPINTIN~ OF 
RESULTS $ 

REAL ARRAY B(O:N) $ 
READ (CAHDS.B) $ 
f~t:::AD (CARDS, X) $ 

Y = B <ri) $ 
FOR K=N-l STEP -1 UNTIL 0 00 Y = Y*X+ACK) $ 
wRITE (PRINTER.'VALUE OF A POLYNOMIAL OF DEGRE~·.tN=t,N. 

'COEFFICIENTS',B,'X="X,'Y=',Y) ~ 
END CALCULATION $ 

Ef\JU Pf<OGRAM ~ 

DATA 

4 
1.223 3.5 7.52 -4.02 -33.5 
5.~~ 

RESULTS: 

VALUE OF A POLYNOMIAL OF DEGREE 

4 

COEFFICIENTS 

1.2230.+00 3.5000.+00 7.5200,+00 -4.0200,+00 -3.'500,+01 
x= 

~.5~OO,+OO 

Y= 
-3.2220,+04 



\ / 

-~-

BEGIN 
COMMENT EXAMPLE 4 

PROGRAM WITH A REAL PROCEDURE. RIG, WHICH FrNDS THE LARGEST 
OF THE N LOWER-INDEXED ELEMENTS (STARTING WITH INDEX=!) OF A 
ONE-DIMENSIONAL ARRAY, A' WITH POSITIVE ELE~~ENTS $ 

REAL PROCEDURE BIG(NIA) $ 
VALUE N $ 
INTEGER N $ 
REAL ARRAY A $ 
dEGIN 

INTEGER B $ 
REAL C,D $ 

B = 1 $ 
D = A(!) $ 

L: C = 0 - A(B+l) $ 
IF C LSS 0 THEN 0 = A(B+l) $ 
B = B+l $ 

IF B LSS N THEN GO TO L $ 

BIG = D $ 
END ~IG $ 

REAL ARRAY F(1:S0) $ 
REAL H,K $ 

RE AD (CARDS,F) $ 

COMMENT CALL OF BIG TO FIND THE LARGEST OF THE 20 LrWER 
ELEME~TS OF F $' H = BIG(20,F) $ 

WRITE (PRINTER,H) $ 
COMiliENT LARGEST ELEMErJT 1 N F $ 

K = BIG(SO,F) $ . 

COMMENT USE OF BIG IN MeRE CüMPLEX EXPRESSION $ 

H = H + BIG(10,F)/K*BIG(15,F) $ 

WRITE (PRINTER,H,K) $ 

END PHOGRAM $ 

DATA 

1.22 3.55 1 22.2 0.5 7.2 8.12 21.4 4~1 22.5 n.422 
55.2 0.12345 ~.88 3.55 7.53 4 5 2 3 1 77 5 2~.1 
5.1 2.3 3.2 4.2 9.85 8.99 5.66 66 44 11 2 44.7 
5~.12 44.1 2.89 7.521 8.56 5.42 4.88 6.7A9 5.42~ 
7.1234 9.753 R.741 5 6 

RESULTS: 

5.~200,+01 
7.1330,+01 7.7000,+01 



-4-

Example 5. Newton's Method of Successive Approximations 

AREA A 

Given: An area A defined by a circular arc of radius rand its chord. 

Required: Find the value of angle x s ubtended by the arc. 

Solution: The relationship between A and x is: 

r2 
A = - (x - sin x) 

2 

Like many practical problems, this one has no analytic solution. However, methods have been 
developed to find approximate solutions to such problems. The method to be used here is called 
Newton's Method. If the solution x to 

f(x) = 0 

is to be found, then a sequence of values approximating the solution x is given by 

For this problem 

and 



-5-

Therefore, using elementary algebra, the approximation scheme is 

1 - cos xn 
This equation is sol ved :epea tedly, each tim e w ith the previous val ue of xn+ 1 su bsti tu ted 

for xn to compute a new value fo r xn+ l' The seCOii d term 0 f the equa tion i s the differen ce 
between successi ve approximations. 

When this difference becomes less than sorne specifie d value, the sequence of approximati ons 
is said to have converged to a solution. The iteration proc"edure is then terminated and the 
problem is considered solved. 

Practical cons idera tions place a limitation on the num ber of i tera tions permitted. If the 
sequence of approximations does not converge within a prescribed number of iterations, the 
procedure is terminated and the approximate solution is rejected. 

The conditions used in this example are: 

Area = 1.5 

Radius = 5.0 

The first approximation is Xl = 1.0. The iteration procedure is then performed for a maxi mum of 
ni ne iterations. If the successive approximations differ by less than 0.00001, then the sequence 
of approximations is considered convergent. The iteration procedure is then terminated and the 
sequence of approxim~tions and differences is printed out in the form of a table. Otherwise, 
the program is terminated with no output. 

The following identifiers in the program represent the corresponding physical quantities: 

AREA Area enclosed by chord and arc CA) 

RADIUS Radius of circ le Cr) 

ANGLE Approximation to the angle x 

CHANGE Difference between successi ve "approxima tions 

SMALL Criterion for convergence 

G For convenience, the quantity 2A/r2 



-6-

The program is as follows: 

BEGIN 
COMMENT EXAMPLE 5 

SAMPLE PROGRAM USING UNIVAC 1108 ALGOL $ 
REAL AREA, RADIUS, SMALL, G $ 
INTEGER 1, K $ 
REAL ARRAY ANGLEll:10), CHANGE(1:9) $ 
FORMAT FI0(X9,'ITEHATION',X5,'ANGLE',X9"CHANGE"pl.l), 

Fl1(X13,Il,D15.6,D14.5,Al), 
F12(X9,'THE ITERATION PROCEDURE HAS CONVER~ED',Al) $ 

COMMENT SET UP VALUES TO RE USED IN PROBLEM $ 
AREA = 1.5 $ 
RADIUS = 5.0 $ 
S~ALL = 1.0&-5 $ 
G = (2.0*AREA)/(RAOIUS**2) ~ 

COMMENT BEGIN ITERATION LOOP MAXIMUM OF- 9 ITErJATIONS $ 
ANGLE(1) = 1.0 $ 
FOR 1 = 1 STEP 1 UNTIL 9 DO 

BEGIN 
COMMENT COMPUTE CHANGE IN APPROXI~1ATE SOLUTIOt-' $ 

CHA t, J G E ( 1) = ( AN G L E ( 1 ) -S r ~ J( AN G L E ( 1 ) ) -G ) / ( 1 • 0 -C 0 S ( AN GLÉ ( 1 ) » $ 

COMMENT TEST FOR CONVERGENCE OF APPROXIMATE SrLUTION $ 
IF A~S(CHANGE(I» LSS S~ALL THEN GO TO L110 $ 

COMMEnT APPROXIMATION HAS NOT CONVERGED - COMrUTE" NEXT 
APPROXIMATION $ 

ANGLE(I+!) = ANGLE(I) - CHANGE(I) 
END $ 

COMMENT END OF LOOP - ITERATION PROCEDURE HAS NOT CONVERGED $ 

GO TO FIN 1> 
COMf"lENT l'HE 1 TER AT 1 Of\J PROCEDURE HAS CONVERGED $ 

LIIO: WRITE (PRINTER,F10) $ 
WRITt (PRINTER,Fll, FOR K=l STEn 1 UNTIL 1 DO 

(K, ANGLE (K) , CHANGE (K) » $ 

WRITE (F12) 9> 
FIN: 

END OF PROGRAM $ 

Note that a completely blank card gives a blank line in print. 

The sample gave the following result: 

ITEkATION ANGLE 
1 1.000000 
2 .916186 
.3 .908770 
4 .908714 

THE ITEKATIO~ PROCEOURl 

CHANGE 
.08381 
.00742 
.00006 
.00000 

HAS CONVERGED 

This is in excellent agreement with the theory. 



APPENDIX C. 

JENSENS DEVICE 

The purpose of this section is to acquaint the reader with two interesting programming tech
niques, namely Jensen 's Deviee and Indirect Recursi vit y . A thorou gh trea tment of the recu rsi ve 
concept may be found in "The Use of Recursive Procedures in ALGOL 60", H. Rutishauser 

The Anual Review in Automatic Programming, Pergamon Press, London, 1963. 

Jensen's Devi ce comprises the use of two parameters in a procedure caU, in which one is a 
function of the other. Neither may be a value parameter. 

The foUowing example is a method of evaluating an approximation to the definite integr8.1 of a 
function by means of Simpson's Rule over one interval. The algorithm may be written: 

REAL PROCEOUkE SIMPS (X, ARITH, A, B) $ 

VALUE A,B $ REAL X, ARITH, A,A $ 
BEGIN REAL FA, FM, FA $ 

X=A $ FA=ARITH $ X=B $ FB=ARITH $ 
X=B-A)/2 $ FM=ARITH $ 
SIMPS=(B-A)*<FA+4*FM+FB)/6 

END SIMPSON INTEGRATION $ 

ln a caU of SIMPS, ARITH may be any arithmetic expression. Jensen' s Deviee refers to the 
case when ARITH is a function of X. For example, the call: 

would cause ARITH to be replaced by EXP(Z*Z) in the running program. This caU evaluates 
an approximatio~ to the integral 

1 

f 2 
e Z dz 

o 

In evaluating an approximation to the double integral 

1 1 
f f eXY dy dx 
o a 

indirect recursivity may be used by making the parameter corresponding to ARITH a call to 
SIMPS itself, thus 

More material may be found in: E.W. Dijkstra, A Primer of ALGOL 60 Programming, Bound 
Variables, Academic Press, London, 1962, pp. 57-59. 





'_J 

APPENDIX D. 

DIFFERENCES BETWEEN NU ALGOL AND UNIVAC 1107/1108 ALGOL 

1. Improvements 

Note: The points below are not necessarily listed ln order 

of importance. 

1.1. User Convenience 

a) Automatic resolution of type conflicts between actual 

and formaI parameters. 

b) Format phrases allowed in 1/0 statements. 

c) Dynamic definition of format phrase parameters. 

d) Local declaration not necessary. 

e) New format phrases for: absolute positioning to 

column, centerjustified string, leftjustified integer 

and 'zero suppression. 

f) Editing to and from a string in core (not using exter

nal dèvices). 

g) Compilation of several external procedures ln same 

element. 

1.2. Diagnostics. 

a) Improved check of legality of format phrases. 

b) Improved error detection and recovery giving more pre~ 

cise message, eliminating superfluous and misleading 

diagnostics. 

c) Undefined labels are detected on first reference not at 

the end of the program. 

d) Warnings ·are given for inefficient use of language and 

legal but possibly dangerous constructions. 

e) Full control at compile time of non formaI and non 

external procedure parameter calI, both number of para-



-2-

meters and type-kind-correspondance. 

f) Control of number of subscripts for arrays at compile time. 

1.3. Run-time Efficiency 

a) Full utilization of aIl accumulators if necessary. 

b) Inline arithmetic for aIl types. 

c) Faster subscript mechanism including control of sub

script range. 

d) Improved procedure calI mechanism with parameter con

trol at compiletime. 

e) Improved handling of formaI parameters, short-circuit

ing the general mechanism for simpel name parameters 

when the type is correct. 

f) AlI constant arithmetic performed at compiletime. 

g) Improved addressing of non-local variables. 

h) Improved addressing of formaI name arrays providing effi

cient handling of vectors, matrices "etc. in subroutines. 

i) Double buffering of tape 1/0. 

j) Pseudo-evaluation of boolean expressions minimizing 

number of necessary tests in boolean expressions, espe

cially useful in conditional statements. 

k) Faster mechanism for calling FORTRAN subroutines. 

1) Efficient handling of external machinecode procedures 

(EXTERNAL LIBRARY procedures) with full compiletime 

parameter check, and c6nversion capabilities for the 

parameters. 



-3-

2. Changes and restrictions 

2.1. Externa1 procedures 

a) Externa1 procedures compi1ed using the'UNIVAC 1107/ 

1108 ALGOL compiler cannot be run together with ALGOL 

~rograms compi1ed using the NU ALGOL compiler (and vice 

versa). 

b) Externa1 procedures compiled using the NU ALGOL compi

ler must have an E-option on the compiler control card 

(ALG card). 

c) The declaration EXTERNAL NON-RECURSIVE PROCEDURE is not 

allowed. 

d) The declarations ,for external procedures coded in SLEUTH 

II are EXTERNAL SLEUTH PROCEDURE or EXTERNAL LIBRARY 

PROCEDURE depending on the type of parameter transmission. 

e) When using external FORTRAN procedures which have DOUBLE 

PRECISION or COMPLEX arithmetic, F-option must be used 

on the XQT card to avoid the run time error: 'ILLEGAL 

OPERATION' . 

2.2. Declarations 

a) The declaration OWN is not allowed. 

b) The dec1aration OTHERWISE is not allowed. 

c) Reserved ALGOL words cannot be used as variable names. 

Two new reserved words have been.introduced: OPTION 

and OFF. 

d) A procedure may have at most 63parameters. 

2.3. Formats 

a) In input or output statements, the format identifier must 

come before the list to which it applies. 

b) The format phrase T is not allowed. 



-4-

2.4. Standard Procedures 

1. The following changes have been made ln the names of 

sorne of the standard procedures. 

OLD NEW 

COMPLEX COMPL 

lMAGlNARY lM 

lNTEGER lNT 

REAL RE 

MEANlNG 

Produce a complex number using 

the first parameter- as the reàl 

part, and the second as the 

.imaginary part. 

Obtain the imaginary part of 

the complex number given as 

parameter. 

Convert to type lNTEGER. 

Obtain the real part of the com

plex number given as parameter. 

2. The argument of a standard procedure is regarded as 

being by value. 

2.5. FOR Statements 

1. The controlled variable may only be of type REAL or 

lNTEGER. 

2. If the controlled variable lS a subscripted variable, 

the subscript will keep the value that it had at the 

beginning of the. FOR statement ev en if the statements 

controlled by the FOR change this value. 

ExamEle: 

l = 3$ 

FOR A(l) = (l,l,lOOJ DO l = l + 1$ 

When the FOR statement is fini shed 

A(3) will have the value 101 

l will have the value 103 



, ----/ 

-5-

2.6 IF Statements 

a) An IF statement after THEN must be enclosed with BEGIN 

END 

b) An IF expression used in an arithmetic expression must be 

enclosed in parentheses. 

Note: This is to eliminate the ambiguity of the 

"dangling else" and is clearly stated in the 

ALGOL 60 report. 

2.7 Miscellaneous 

a) AlI programs with the exception of external procedures must 

be enclosed with BEGIN END$ 

b) In a multiple assignment statement all of the variables to 

which the assignment is being made must be of same type. 

c) The value' specification must be placed in front of the type 

specifications. 

d) Use of the device DRUM lS somewhat different. See sec. 

8.3.7. 

e) In input and output, tapes 21 and 27 are no longer implemented. 

Continuous reading and re-reading may be done as shown in 

sec. 8.3.4. 

f) The statement REWINT(TAPE())$ must be used instead of 

REWIND(TAPE() ,INTERLOCK) $ 

g) When errors or EOF-conditions are detected during lia and 

no labels are provided, the program is terminated with an 

appropriate m~ssage. 

h) Positioning to a KEY is halted if an EOF is encountered. 

Sec. 8.5.7. 





APPENDIX E. 

SYNTAX CHART. 

Table of Contents. 

Introduction 
Program 
Declarations 

. type 
array 
string 
string array 
switch 
external procedure 
procedure 
local 
list 
format 

Statements 
block 
compound 
assignment 
go to 
conditional 
for 
dummy 
procedure 

Expressions 
variable 
function designator 
arithmetic expression 
Boolean expression 
designational expression 

Basic Elements 
identifier, letter, digit 
number 
string, local value 
delimeter 

Input/Output 
input statement 
output statement 
position statement 
rewind statement 

2 . 
3 • 
4. 
5 • 
6 • 
7 . 
8. 
9 • 

10. 
Il. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
30 .' 
31. 

32. 
33. 
35. 
36. 

37. 
38. 
40. 
41. 



-2-

INTRODUCTION 

This appendix summarizes the syntax of NU ALGOL in chart forme 

The use of the chart portion of the manual is very simple and almost self-explanatory. At the top of each page ia 

a square box which contains the name of the concept defined on that page, for example, 

1 type declaration 1 ::. 

The definition consists of a series of boxes connected by lines indicating the flow of symbols which define the 
concept. Two klnds of boxes are diatinguished: those with round corners (or c1rcles) and those with square corners. 

The round cornered boxes contain symbols that stand for themselves. Square cornered boxes contain names of 

concepts which are defined elsewhere in the chart and may be found by a quick reference to the index. 

In so~ places a metalinguistic "or" symbol has been used (for reasons of space) and should be understood as 

follows: 

is equivalent to 

In sorne sections a pair of letters may mark two spots in a definition. Underneath that section will appear that letter 

pair followed by a name. This means that that name will be used in lieu of the string of symbols between the letter 

pair in other parts of the chart. 

This chart uses only one of the two possible representations for sorne symbols in Algol. The following equivalences 

should be noted: 

Symbol used in this chart 

GO TO 

$ 

Alternate representation 

[ 
] 

GO or GOTO 

In addition, comments may be inserted in the program by means of the following equivalences: 

$ COMMENT <any sequence not containing a $) $ equivalent to $ 

BEGIN COMMENT (any sequence not containing a $) $ Il " BEGIN 

END < any sequence not containing END or ELSE or $) " " END 

This chart makes no mention of the use of spaces within Algol. A space has no meaning in the language (outside 

of strings) except that it must not appear within numbers, identifiers, or basic symbols, and must be used to 

separate contigous symbols composed of letters or digits. Spaces may be us ed freely to facilitate reading. 



c 

program 1:: = 

• 

Explanation: A program is a complete set of declarations and 'statements which define an algorithm for solving a problem: 
The logic of this algorithm (Hs correctness) is the business of the programmer. The compiler only checks 
that the syntax (form) is correct. 

Notice that the $ is used ta separate declarations and statements and is not inherently a part of a declaration 
or statement. Nevertheless, it will be shawn in most examples for clarity. 

In an externally compiled procedure CE-option on the ALG card) , 
the outermost BEGIN-END pair is not required. 

\. 

w 
1 



declaration 1 :": = 

type declaration 

array declaration 

string declaration 

string array declaration 

switch declaration 

t:'xternul procedure dr-claration 

proct>dure declaration 

local declaration 

list declaration 

format declaration 

Explanation: There are 10 types of declarations each of which is definect in detail on the following pages. 

1 
+" 
1 



l-

~~ec1~r~tiOn 

T T 

TT~ 

Explanation: A type dec1aration dec1ares the mode of arithmetic the following identifiers will assume in the block. Types 
REAL2 and COMPLEX associate 2 words with the identifier, the others one. Upon entrance ta a black, 
identifiers are given the value zero. 

Examples: INTEGER 14, PAK, LOOPCNT $ 
BOOLEAN ANYLEFT, LASTOUT $ 

COMPLEX C, CINVS $ 
REAL2 DP $ 

REAL QIN, QOUT, MAXITEM $ 

'--- -

(J1 

1 



L-~--l ~ array declaration ::. 

type 

BB_I bcund pair list cc 1 bound pair uu 1 upper bound J 

LC arithmetic 
expression 

LL 1 lowe-;-b~:dJ 

arithmetic 
expression 

Explanation: An array declaration associates an identifier with a l-dimensional or larger matrix of values. The arithmetic expressions 
define the lower and upper limits of each dimension. The type plays the same role as for simple variables. If omitted, 
type REAL is assumed. 

Examples: COMPLEX ARRAY CCON4{O:N). CP1(1:N+1) $ 
BOOLEAN ARRAY BAND, BOR, BXOR(-4:4) $ 
REAL ARRAY B(I-l:I+1),XINITIAL, YINITIAL(-N:N,-N:N, 1:2) $ 

INTEGER ARRA Y 1(1: 5). J, K, L(ENTIER{X): Pl12) $ 
AR RAY XYZ4(1:NK2) $ 

1 
m 
1 



( 
'---

string âeclaration 1::· 

substring ch~elaration 

identifier arithmetic expression 

SS: [SUb~i~g d:laration 

LL: 1 length part 

Explanation: 

Examples: 

substring declaration 

A string declaration associates an identifier with a '.rariahle whose value is a string of characters. The length of the string 
is its number of characters. A group of characters of a string may he named as a substring. The length of a string must 
be less than 4096. 

STRING STl(36), NAME(INITL<\LS(2), LAST(16)) $ 
STRING PI(N+2), QUOTE(1) $ 

STRING NEXTOUT(80) $ 
STRING ALPHA(BETA(2, GAMMA(4). 2), DELTA(EPSILON(6)), 20) $ 

-......J 
1 



L string array declaration 1:: . 

~ 

identifier length pal't bound pair list 

Explanation: . A string array is a matrix whose elements are strings. Appended to the length part of the declaration are 
the bound pairs for each dimension, just as for an ordinary array. 

Examples: STRING ARRAY SA(80:0:100), CARD(LABEL(8), OP(6), 2, OPERAND(64): l:N) $ 
STRING ARRAY LASTFILE (CLENGTH:l:507) $ . 

co 
1 



c 
switch declaration 1::-

identifier designational expression 

Explanation: A switch declaration associates an identifier with an ordered list of designational expressions. A switch is 
used for transfer to a label depending on the value of sorne variable. 

Examples: SWITCH JUMP = Li,START, FEIL4, SLUTT $ 
SWITCH BRANCH = IF BETA EQL 0 THEN Li ELSE JUMP(J), START $ 

(0 
J 



external procedure :Cla;a~i~~--J :: = 

SLEUTH 

procedure heading I~ 

Explanation: This declaration specifie~ a list of identifiers which are to be the names of 
procedures not found in the program. These procedures may be written in assembly 
language (SLEUTH, LIBRARY), ALGOL or FORTRAN. The type of external procedures 

Examples: 

is specified if they are functional procedures. 

EXTERNAL FORTRAN REAL PROCEDURE CBRT$ 
EXTERNAL FORTRAN PROCEDURE NTRAN,INVS$ 
EXTERNAL PROCEDURE ROOTFINDER,KEYIN,KEYOUT$ 
EXTERNAL SLEUTH PROCEDURE TYPEIN,TYPEOUT$ 
EXTERNAL LIBRARY INTEGER PROCEDURE PACK(A,B,C)$ 

VALUE A,B$ 
INTEGER A,B,C$ $ 

1 
f-J 
o 
t 



(~ 

procedur~ declaration 1::· 

HH ~C:dure ~a~ing 

TT 1 procedure body 

SS 1 specification part 

VV 1 value part 

FFI formaI parameter part 

identifier 

identifier 

statement 1 T 

1 
!-I 
!-I 
1 



Explanation: A procedure declaration defines an algorithm to be associated with a procedure identifier. The principal 
constituent of a procedure declaration is a statement which is executed when the procedure ls IIcalled" 
(see procedure statement and function designator). The procedure heading specifies that certain identifiers 
appearinfl whithin the procedure body are formaI parameters. A parameter may also be specified as 
IIVALUE in which case the procedure statement, when called, has access only to the value of the corre
sponding actual parameter, and not to the actual parameter itself. 

Examples: PROCEDURE ZEROSET (A, N) $ 
VALUE N $ INTEGER N $ ARRAY A $ 
BEGIN COMMENT THIS PROCEDURE ZEROES AN ARRAY ASSUMED DECLARED ARRAY A{l:N) $ 
INTEGER 1 $ 
FOR 1 - 1 STEP 1 UNTIL N DO A(I) = 0 END ZEROSET $ 

INTEGER PROCEDURE F ACTuHIAL (NUMBER) $ 
VALUE NUMBER $ INTEGER NUMBER $ 
FACTORIAL = IF NUMBER LSS 2 THEN 1 ELSE NUMBER K FACTORIAL (NUMBER-I) $ 

BOOLEAN PROCEDURE BOOL $ 
BOOL = NOT (FINISHED AND OFF OR FIRST AND LAST) $ 

1 
j---J 
N 
1 



,r" 

~- 1\ ...... 

G-~ecla'ratiOn 1 ::. 

Explanation: The local declaration in NU ALGOL is treated as a dummy 
declaratiqn and has been retained only for compatibility with the 
with the old UNIVAC ALGOL. 

1 
t----J 
w 
1 



[ li~ecla~~tion 1 :: . 

arithmetic expressio"n 

Boolean expression 

array identifier 

identifier string array identifier 

list element 

LLI list element 

Explanation: A list defines an ordered sequence of expressions and array identifiers. A list may only be used as a parameter 
to a procedure, and, ultimately, only by a procedure written in non-Algol language. 

Examples: LIST OUT (A+1, N+l, FOR 1 = (l, l, NMAX)DO(Q(I), QRES(I))) $ 
LIST Ll(A, B, Cl. L2(IF MOD(Q, 2)EQL 0 THEN B ELSE Q) $ 

1 
1---1 
+ 
1 



c' 

[format declaration 1 ::= 

identifier 

AA [Phr~se list 

unsigned 
integer 

\, 

string 

unsigned 
integer 

~arithmetic 
expression 

t------t .. ~1 phrase listl .-.t 

1 
f--J 
en 
1 



statement 1::. 

compound statement 

assignment statement 

go to statement 

conditional statement 

for state'ment 

dummy statement 

procedure statement 

Explanation: Statements define the sequence of operations to be performed by the program. The 8 types 
of statements are each defined in the following pages. 

1 
1--' 
01 
1 



(", 

block 1 ::: 

Explanation: A block automatically introduces a new level of nomenclature by a set of declarations. This means that any 
identifier declared in the block will have the meaning assigned by the declaration, and any entity represented 
by such an identifier outside the block is completely unaccessible inside the block. The identifiers declared 
within a block are said to be local (to that block) while all other identifiers are non-local or global (to that 
block). 

Example: L:BEGIN INTEGER ARRAY A(1:10) $ 
A(l) = 1 $ 

END $ 

FOR J - (2,1,10) DO A(J) = A(J-1) + J $ 
FOR J - (l,l,10) DO WRITE (J,A(J» $ 

(, 

1 
/-1 
-:J 
1 



[~~p:~n~-~ta~ment J:: = 

Explanation: A compound statement serves to group a set of statements by enclosing them with a BEGIN - END pair. 

.!;xample: 

This is then treated as a single statement. 

BEGIN T. 0 $ FOR 1 = 1 STEP 1 UN TIL M DO 
T= B(J,I) K C(I,K) + T $ 
IF T GTR 820 OR OVFLOW THEN GO TO SPILL $ 

END $ 

1 
1-...1 
OJ 
1 



1 

"-. 

[-assignment statement l:: = 

'- , 

arithmetic expression 

procedure identifier Boolean expression 

Explanation: An assignment statement serves to assign the value of the expression on the right-hand side to the variable 
. and procedure identifiers on the left hand side. A procedure identifier is only permitted on the left-hand 

side in case the statement appears in the body of that functional procedure. If any of the left part variables 
are subscripted variables, theyare evaluated before the expression is evaluated. Transfers of type are 
automatically evoked when necessary. 

Examples: A(I) - B(I) = &35 $ 
AANDB = A AND B OR EPSI GEQ EPS2 $ 
P = SQRT(BKx2 - 4xAKC) $ 
T = S - MYOKEPSOK( 2KPlxF)KK2 $ 
S(V, K-2) = COS(ANGLE) + 0.5 K(IF SI THEN KKX3 ELSE KKx5) $ 
NAME(l, 6:P + 1) = 'IFTHEN' $ 

1 
f-J 
<.0 
1 



go to statement 1 :: = 

designational expression 

Ex(: ~nation: A go to statement causes transfer of control to the statement with the label determined by the de sig
national expression. 

_~:amples: GO TO PART4 $ 
GO TO OPS (1-2) $ 

. GO TO IF ALPHA GTR 0 THEN QI7 ELSE JUMP( - ALPHA) $ 
GO TO TRACK (IF MOD(P, 2) EQL 1 THEN l ELSE A(I» $ 

l'V 
<:) 

1 



",_ .. 

l 

conditional statement :: = 

compound statemcnt 

assignmen! statement 

Boolean expression go to statement 

dummy statement 

for statement 

U~ unconditional statement 
procedure statement 

Explanation: The if statement causes the execution of one of a pair of statements depending on the value of a Boolean expression. 

Examples: 

If this expression is TRUE then the statement after the THEN is executed and the statement after the ELSE is 
skipped. If F ALSE, then the statement after the ELSE is executed, if it exists. 

IF Cl GTR la THEN A(O, 0) • KMAX(I) ELSE GO TO LOOP $ 
IF BOOL(J) lM PL BOOL (J+1) THEN ST:Ë:P(J) - 'VALID' ELSE STEP(J) = 'INVALID' $ 
IF 1 GEQ a THEN BEGIN FOR K = -1 STEP 1 UNTIL 1 DO B(K) = -COStA-Il $ 

SUM - ADDUP(B) END ELSE 
BEGIN IF 1 EQL -1 THEN GO TO ERROR ELSE GO TO NEXT END $ 

statement 

l'V 

f-J 
1 



for statement J :: = 

arithmetic 
expression 

arithmetic 
expression 

Explanation: 

Examples: 

FF: 1 for clause 

LL: 1 for list 

arithmetic 
(·xpression 

statllnent 

arithmetic 
expression 

arithmetic 
expression 

arithmetic 
expression 

Boolean 
expression 

The FOR statement contrals thf' t'xt'cution of tht:' st~temelit followillg the DO a number of times while 
the variable to the left of tht' = ls assiglll'd thé valués determitll'd il.' th,· for list. The (" ) construction 
is equivalent to the STEP -UNTIL construction. 

FOR 1 = 1 STEP 1 UNTIL N DO FOn. J = 1 STEP 1 U)lTIL 7\1 DO A(I, J) = 0 $ 
FOR S - S + 1 WHILE P(S) NF;Q 'A' AND S LEQ 80 DO BEGI.:'\ 

N=N~10 + P(S) $ IF' OVFLOW TlIEN GO 1'0 SIZEHH END $ 
FOR S = (1, 2"S-S, 2xxl0). -l, -2, -4 DO IF LOGAND(S, VAH) TIIEN GO Ta YES $ 

l'V 
l'V 
1 



". 
l~ '\ .. 

[du~my statement ::-

• ~label ~. ~ 
Explanatian: A dummy statement daes nathing. It may serve ta place a label. 

Examples: FOR l " (1,1, N) DO FOR J = (1,1, N) DO BEGIN 
IF 1 EQL J THEN GO TO ENDLOOP $ 

.. .. $ ENDLOOP: END $ 

S = 0 $ 
FOR S • S + 1 WHILE P(S) NEQ 'A' DO $ 

1 
N 
W 
1 



procedure statement /:: = 

expression 

array identifier 

string array identifier 

identifier 

switch identifier 

procedure identifier 

format identifier 

list identifier 

AA:/ actual parameter 

for clause list element 

Explanation: A procedure statement is a caU on a declared procedure. The actual parameters of the call replace the formaI 
or dummy parameters throughout the body of the declared procedure. If the corresponding formaI parameter 
has been "VALUE" specified then only the value of the actual parameter is used by the procedure. 

Examples: MARGIN (62,56,4) $ 
P(A, B, C, l, J, K) $ 
ROOTFINDER (N, 0, ERGDET, KOEF, -4&&0, &&-5,5.0&&-1,1000) $ 

1 
l'V 
+=" 
1 



c_-

expression 1:: = 

//" 

arithmetic expression 

Boolean expression 

designational expression 

Explanation: There are 3 types of expressions, classified according to their values. An arithmetic expression 
has a numerical value or a string value, a Boolean expression either TRUE or F ALSE, and a 
designational expression has a label as a value. 

1 
l'V 
(J1 

1 



variable ; ; -

variable identifier 

array identifier 

string identifier 

string array identifier 

LL:~~~CriJlt list 

SS: ~ring part 

arithmetic expression 

arithmetic expression 

arithmetic expression 

subscript list 

substring part 

Explanation: A variable is a designation given to a single value. A variabh' identifier is a varbble-natnf'd in 
a type declaration. 

~xamples: DELTA 
BOOLV(7) 
CARD 
CARD(4) 
CARD(I,6) 
A(P(4). NxSLl'.J(ANG). 3) 
CUROUT( J, K) 
CUROUT(1:J,K) 
CUHOUTtl,6: J, K) 

J 
l'V 
(J) 

1 



L 

[runction designator 1:: = 

identifier 

actual parameter 

Explanation: A function designator defines a single numeric or logical value by applying the rules of the procedure declaration 
ta the actual parameters. Only a procedure which has a type associated with it can be a function designator. 
Besides those functional procedures declared in the program, several standard ones are available for use without 
being declared. 

Examples: CLOCK 
ARCTAN(l. 0) 
BACKSLASH(Al. A2) 

N 
-:J 
1 



arithmetic expression l: = 

simple arithmetic expression 

Boolean expression 

II: if clause 

SS: r- simple arithmetic expression 

designator 

arithmetic 
expression 

1 
N 
ro 
1 



( 
\-..-

Explanation: An arithmetic expression is a rule for computing a numerical value. 

Examples: A(4) + 2 K SQRT(DKK3) - DELTA 
IF A LSS &- 5 THEN 0 ELSE AI &5 
Q(MOD(N, 2) + 1) K (IF FIRST THEN 10 ELSE RATIO) Il 3 

1 
f'0 
tO 
1 



Boolean expression 1 :: = 

simple Boolean expression 

logical value 

function designator 

simple arithmetic 
expression 

relational 
operator 

Boolean expression 

OR 1 AND 1 XQR 1 IMPL 1 EQIV 

SS: simple Boolean expression J 
Explanation: A Boolean expression is a rule for computing a logical value. 

Examplea: FffiST AND NOT SPECIAL 
A LSS DELTA OR ITERATIONS GTR MAXN 

simple arithmetic 
expression 

IF BETA THEN TRUE ELSE IF STEP(I) IMPL STEP(I+l) THEN QVALUE(P, 1) ELSE QVALUE(P, 1-1) 

w 
o 
1 



( 
'-

,..---
( 

designational expression 

simple designational expression 

S 
arithmetic expression 

designational expression 

SS:[Si~-de~atio:':l expression 

Explanation: 

Examples: 

A designational expression is a rule for computing the label of a statement. A switch identifier followed by 
an arithmetic expression in parenthesis refers to the label in the corresponding position in the switch 
declaration. 

LlO 
IF BETA THEN SLUTT ELSE NEXT (KI12) 

(, 

w 
~ 
1 



1·- identifier J::: 
[:ariable identifier 1 :: = array identifier l: = 

[Stri~g~~tifier -J :: = string array identifier 1:: = 

· Cletter] c; dl~t .;J ) · [~WitCh identifier --1= : = procedure identifier 1 :: = 

[!iSUd-::~~r J:= format identifier ,::= 

label 1::= identifier 

Guer 1::= 

• G I~ 1 ~~-I FIG 'H-I ~n 1 KIL 1 MIN 10 1 p 1 Q 1 Ris 1 T 1 u 1 V 1 w 1 X Iy 1 z) • 

r digit 1 :: .. 

• Co Il 1 2 1 3 1 4 r 51 6 1 7 1 8 19) ~ 

Explanation: An identifier is a name chosen to represent a variable, array, etc. Only the first 12 characters 
of an identifier uniquely define it. 

Examples: P47 
DELTA 
SQRTROOOF2 
E1C4PDQ 

1 
w 
l'V 
1 



nurnber 1:: = 

l, 

unsigned 
integer 

ordinary 
nurnber 

p 

( 
r' 

unsigned 
integer 

( 

--8 ~ · '---_--JI 

ordinary 
nurnber 

UU: unsigned integer J 
II: integer 

00: ordinary nurnber 

PP: unsigned nu"rnb;;] 

1 
W 
W 
1 



Explanation: A number is written in its usual decimal notation with the conventions of & for power of ten 
and corner brackets for complex numbers. Numbers are of 4 types: REAL, INTEGER, REAL2 
and COMPLEX. REAL? is differentiated from REAL by use of && for power of ten, or by having 
between 9 and 16 digits in the mantissa. COMPLEX numbers are distinguished by the corner 
brackets, where the first number is the real part and the second the imaginary. 

Examples: 1 
-1009 
"-.4031 
3. 1459 
-18.0&4 
-(1,0) 
20&-5 
+1800. &&0 
&-6 
+(-.06, &-2) 

w 
+" 
1 



(-

\... 

string 1 ::-

,- logical value 1 :: = 

(any character except ' ) 

(
l 

Explanation: A string constant is any string of characters which are used as parameters to procedures 
or with string variables. 

Examples: 'DOGGENBURG STR. 22' 
'NEQ' 
'BJARNE WIST' 
'227 KALPHA' 
, REAL ARRA y , 

Explanation: A logical value is a Boolean constant. 

( 
\ ... 

w 
en 
1 



" -~elimiterJ 

+ 1 - 1 }( 1 / 1 Il 1 }(X' 

A 

LSS 1 LEQ 1 EQL 1 GEQ 1 GTR 1 NEQ ..... ' 
R 

EQIV t IMPL 1 XOR 1 ()R 1 AND 1 NOT " 
L 

1 THEN 1 FOR 1 ELSE 1 DO 1 OPTION 1 OFF ", S 

BOOLEAN 1 INTEGER 1 REAL 1 REAL2 1 COMPLEX 1 STRING 

ARRAY 1 SV.:ITCH 1 PROCEDUREI EXTERNAL 1 LIST 1 FORMAT 

1 BEGIN 1 END « '\ B » r-- • 

VALUE LABELlr--~~~--------------------------------------------------------~ 

AA: arithmeticoperator PP: separat~ 

RR: relational operator DD: 1 :eclarat:-I 

LL: ~-oolean :p~rat;:] 
~ 

BB: bracket 1 

SS: sequential operator CC: 1 spec~~icator 

1 
W 
01 
1 



c ( 

input statement 1 ::-

rI'!: 

designational 
expression 

designational 
expression 

, , 't 

arithmetic 
expression 

designational 
expression 

list identifier 

list elernent 

format 
ide"ntifier 

phrase 
list 

Explanation: The READ statement reads data from the specified input device into the 
variables indicated by the list elements. The designational expressions 
are used as exit points in case end-file or end-information conditions 
are met on that device. 

Examples: READ(CARDS,LEOF,LEOI,A,B,C,S,EPSILON) $ 
READ(DRUM(INDEX), FOR I=(l,l,KMAX) DO FOR J=(l,l,LMAX) DO ERG(I,J» $ 
READ(DATE) $ 

4, ~., 

w 
-.] 

1 



output statement --J:: = 

TAPE 1 DRUM 

arithmetic expression 

Boolean expression 

designational 
expression 

at end of parameter list 

arithmetic 
expression 

list identifier 

list element 

format 
identifier 

phrase 
list 

.at end of parameter list 

r------------------~ 

MM: l modifier 

w 
ex> 
1 



,-
'''--- ' \ ..... 

Explanation: The WR1TE statement outputs the values defined by the lists to the speci
fied device. Modifiers (KEY,EOF,EOI) produce special marks on tape, a 
format controls editing on paper and punched cards, the designational 
expr'ession is used as a return print ·if the output device functions abnor
mally. 

Examples: WRITE (PR1NTER, FIO, FOR 1=(1, l, N) DO A(1,J» $ 
WRITE ('CHECKPOINT CHARLIE', A) $ 
WR1TE (TAPE(O),KEY(I),ABORTLAB,DUMPLIST) $ 
WRITE (TAPE(OUTPUT),EOF('LAST'),E01) $ 

W 
<..D 
1 



position procedure ~t-atem~:: = 

designational 
expression_ 

designational 
expression 

,. 

arithmetic 
expression 

designational 
expression 

Explanation: The procedure POSITION is used to position a tape forward or backward a number of records 
or to search for a KEY. EOF. or EOI marker. The designational expressions are used as exits 
in cases of search failure. 

Examples: POSITION (T APE( 0). - 2) $ 
POSITION (TAPE(INPUT). KEY('PRlCES').ABORT) $ 
POSITION (TAPE(OUTPUT), EOl) $ 

1 
-1= 
o 
1 



rewind statement 1 ::,. 

arithmetic 
~ expression 

Explanation: The REWIND statement will rewind the specified tapes. The REWINT will 
cause the units t0 be rewound with interlock (read/write protect). 

Examples: REWIND (TAPE (INPUT), TAPE(OUTPUT)) $ 
REWINT (TAPE(I),TAPE(A),TAPE(J)) $ 

1 
+ 
f-J 
1 


	Preface
	Acknowedgement
	Contents
	1 Introduction
	2 Basic Information
	3 Declarations
	4 Expressions
	5 Statements
	6 Blocks
	7 Procedures and Type Procedures
	8 Input/Output
	9 Other Information
	10 Error Messages
	Appendices
	A Basic Symbols
	B Examples of Programs
	C Jensens Device
	D Differences Between NU ALGOL and Univac 1107/1108 ALGOL
	E Syntax Chart




